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The rare-earth material LiHoF4 is believed to be an experimental realization of the celebrated (dipolar)
Ising model and, upon the inclusion of a transverse field Bx , an archetypal quantum Ising model. Moreover,
by substituting the magnetic Ho ions by nonmagnetic Y ions, disorder can be introduced into the system,
giving rise to a dipolar disordered magnet and at high disorders to a spin glass. Indeed, this material has been
scrutinized experimentally, numerically, and theoretically over many decades with the aim of understanding
various collective magnetic phenomena. One of the to-date open questions is the discrepancy between the
experimental and theoretical Bx − T phase diagram at low fields and high temperatures. Here we propose a
mechanism, backed by numerical results, that highlights the importance of quantum fluctuations induced by the
off-diagonal dipolar terms, in determining the critical temperature of anisotropic dipolar magnets in the presence
and in the absence of a transverse field. We thus show that the description as a simple Ising system is insufficient
to quantitatively describe the full phase diagram of LiHoF4, for the pure as well as for the dilute system.

DOI: 10.1103/PhysRevB.105.L180413

Introduction. Anisotropic dipolar magnets, realized in both
single molecule magnets and rare-earth magnetic insula-
tors, are at the forefront of quantum research. The large
anisotropy barrier allows their use as nanomagnets, with pos-
sible applications in the operation of qubits and memory
bits at reduced sizes [1–3]. In lattice form, anisotropic dipo-
lar magnets typically have very small exchange interactions,
allowing for efficient induction of quantum fluctuations by
applied transverse fields. Thus, anisotropic dipolar magnets
are perceived as experimental models for the transverse field
Ising model. These unique characteristics motivated intense
study of quantum phenomena in these materials, including
quantum phase transitions [4–7], quantum annealing [6,8,9],
domain wall dynamics [10,11], and high-Q nonlinear dynam-
ics [12].

One of the most studied anisotropic dipolar magnets is
LiHoF4 [5,8,9,13]. Below the Curie temperature of Tc =
1.53 K LiHoF4 orders ferromagnetically due to the dipo-
lar interaction between Ho3+ ions combined with its lattice
structure [14]. By the inclusion of an external transverse
field the transition temperature is suppressed, until eventu-
ally it is converted to a quantum phase transition at Bx ≈
4.9 T [4]. Additionally, disorder can be introduced by ran-
domly substituting some of the magnetic Ho3+ ions with
nonmagnetic Y3+ ions, resulting in LiHoxY1−xF4, which
presents a rich phase diagram—including a spin-glass phase at
low concentrations (x � 0.25–0.3) [15–17]—the result of the
interplay of interactions, disorder, and quantum fluctuations
[18–24]

The Bx − T phase diagram of LiHoF4 is indeed in quali-
tative agreement with that of the transverse field Ising model,
but a quantitatively correct description has proven enduringly
elusive, specifically at the high-temperature, low-field regime,

where thermal, rather than quantum, fluctuations are dominant
[23,25,26].

The significance of off-diagonal terms of the dipolar in-
teraction is well appreciated in the presence of disorder and
a transverse field, as they break Z2 symmetry and transform
spatial disorder to an effective random longitudinal field,
making this material one of the few magnetic realizations
of the random field Ising model [19–23]. In this Letter we
establish the importance of off-diagonal dipolar (ODD) in-
teraction terms to the quantitative description of the phase
diagram of LiHoxY1−xF4 at 0.4 < x � 1, which may thus
provide insights to open questions in the field. We show that
even for the pure system, and in the absence of a transverse
field, the classical Ising model, which does not take these
terms into account, provides an insufficient description of the
system. The reason for this is that ODD interactions give
rise to quantum fluctuations which markedly affect the phase
diagram. These fluctuations are induced when ODD terms
exert internal transverse fields that lower the energy of the
Ho3+ ions on which they are exerted. We argue such fields
are more prevalent in the paramagnetic (PM) phase than in
the ferromagnetic (FM) phase, thus favoring the former.

Results from previous studies, using various Monte Carlo
(MC) techniques [25,27] and mean-field analyses [4,28],
show a persistent discrepancy with experimental results for
the Bx − T phase diagram [4,23,26,29]. Namely, when the
theoretical results are fitted to the experimental results, either
the zero-field critical temperature or the low-temperature–
high-field regime can be made compatible with experiment,
but not both. If the former is chosen, then even at small fields
the Tc(Bx ) dependence is not theoretically well reproduced,
and, if the latter, then the critical temperatures at low and
intermediate transverse fields are significantly overestimated.
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FIG. 1. The full phase diagram of LiHoF4 as a function of temperature and applied transverse field. (a) A compilation of previous numerical
works. Open squares are quantum Monte Carlo (QMC) results [27]. The dotted line is 1/z calculation with Jex = 3.13 mK and the dot-dashed
line is the same calculation with Jex = 1.16 mK [28]. The solid line is a mean-field calculation [29] which uses the latter exchange value.
Triangles represent results from several different experiments [4,26,29]. An apparent tradeoff is observed between theoretical predictions that
match the experimental results at low temperatures but completely fail at the low-field regime, and ones that give correct zero-field Tc but fail to
predict the correct Tc(Bx ) dependence and give a poor match at the intermediate Bx region. (b) Results of this Letter overlaid on top of previous
theoretical and experimental results. The green Xs are the numerical results of this Letter with off-diagonal dipolar terms included and blue
plus signs are for numerical results where they are excluded. Both use Jex = 1.16 mK.

The fitting is done by tuning the single free parameter rep-
resenting the nearest-neighbor antiferromagnetic interaction
strength, where higher values correspond to lower critical
temperatures. This apparent tradeoff can be clearly seen in
Fig. 1(a).

Employing classical MC simulations with variable single-
spin magnetic moments, we find that the inclusion of ODD
terms in the effective Hamiltonian allows for fitting Tc at
zero field using the same exchange parameter that accurately
fits the data at low temperatures and high transverse fields.
At the same time, we find better agreement with experimen-
tal results for the long unexplained weak dependence of Tc

on the transverse field at small fields, and the linear de-
pendence of Tc on Ho3+ concentration in the absence of a
transverse field.

Theoretical considerations. Off-diagonal terms of the
dipolar interaction have been known to give rise to many
interesting phenomena in the case of the diluted LiHoxY1−xF4

in presence of an external transverse field, where they do
not cancel by symmetry [19–22,30]. We argue that similar
effects, arising from internal transverse fields exerted by the
single-ion expectation values 〈Jz

i 〉 on the x angular momentum
component Jx

j through terms of the form V zx
i j 〈Jz

i 〉Jx
j , make a

significant impact on the phase diagram even in the undiluted
case. The reason is that these ODD terms have a distinctly
different contribution in the FM phase, where they are more
likely to cancel by symmetry, than in the paramagnetic phase,
where they are less likely to do so. For example, a pair of spins
that lie along the a axis of the crystal will exert a transverse
field on spins located between them, above or below the axis
connecting the two spins, if the two spins have opposite orien-
tations. Said field acts to lower the energy of the spin on which
it acts regardless of its state, thereby energetically favoring
the antialigned configuration of its two neighboring spins.

See illustrations in Fig. 2. This interaction thus constitutes
a disorder-enhancing mechanism which acts to decrease the
critical temperature. It requires the existence of three spins
and correlation between two of them—an important aspect
which will be discussed further below.

Another effect of the transverse fields is to decrease the
absolute value of 〈Jz〉 for the two lowest single-ion electronic
energy states, by mixing them with the higher electronic
states. This also contributes to the reduction of Tc just by
reducing the dominant zz dipolar term proportional to 〈Jz〉2.
This mechanism of the correlation induced enhancement of
the transverse field, by its nature, is not likely to be captured
in any sort of mean-field-like analysis as it depends on the
spatial fluctuations of the states. We posit that including the
ODD terms is necessary to explain the previously mentioned
discrepancies between theory and experiment.

Numerical details. In order to examine the effect of ODD
terms on the phase diagram of LiHoxY1−xF4 we perform
Monte Carlo simulations using an effective Hamiltonian de-
rived building upon the work of Chakraborty et al. [27], but
keeping the ODD terms. In this way we get an effective
Hamiltonian:

Heff =
∑

i

VC (Ĵi ) − gLμB

∑

i

B̂i · Ĵi (1)

where

B̂x
i = Bx − gLμB

∑

j �=i

V zx
i j Ĵ z

j ,

B̂y
i = −gLμB

∑

j �=i

V zy
i j Ĵ z

j ,

B̂z
i = −1

2
gLμB

∑

j �=i

V zz
i j Ĵ z

j − Jex

2gLμB

∑

j∈NN

Ĵz
j (2)
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FIG. 2. Crystal and magnetic structures of LiHoxY1−xF4.
(a) Crystal structure of LiHoF4. Only the F− ions nearest to the
central Ho3+ site are shown. (b) Correlated spins, more abundant in
the FM phase, induce a field with vanishing transverse component
on their common intermediate neighbor. (c) Spins in opposite orien-
tations, more abundant in the PM phase, induce a nonzero transverse
magnetic field on the third spin. (d) When one of the Ho3+ ions is
replaced by a Y3+ ion, the remaining Ho induces a transverse field
on its neighbor regardless of its orientation. Thick green arrows indi-
cate dipole moments, small colored arrows show the magnetic field
generated by the two magnetic dipoles, and a narrow black arrow
qualitatively indicates the magnitude of the transverse component of
the magnetic field exerted on the middle ion. The full effect captured
in the simulation is a result of the transverse field not just on the
middle ion, but on all other ions in the system. For further details on
this point see Supplemental Material [31].

act as effective internal fields when taking their expectation
values, thereby transforming Eq. (1) to an effective Hamilto-
nian for the single spins i. The VC (Ji ) term is a crystal field
potential which imposes an Ising easy axis along the c axis
of the crystal, with a first excited state at ≈10 K above the
ground-state doublet [28]. V μν

i j is the magnetic dipole interac-
tion, Jex is the nearest-neighbor exchange interaction coupling
constant, μB = 0.6717 KT−1 is the Bohr magneton, and gL =
5
4 is a Landé g factor. Ji are angular momentum operators
of the Ho3+ ions. See further details on the derivation of the
effective Hamiltonian in the Supplemental Material [31].

Since the Ho3+ ions retain their Ising character up to
transverse fields well above the critical transverse field [30]

we model a single-ion as a two-state Ising system under an
applied field exerted by all other ions in the system, as well
as the external field. This applied field not only shifts the
energies of the two states, but also modifies the single-ion
magnetic moments 〈Jz〉 associated with them. These are the
magnetic moments which in turn exert magnetic fields on
other ions. Therefore, each site has two possible states, |↑〉 and
|↓〉, and each of these has two quantities of interest associated
with it: local energy 〈↑ (↓)| Hsingle-site |↑ (↓)〉 and magnetic
moment 〈↑ (↓)| Jz |↑ (↓)〉 where

Hsingle-site = VC (Ĵ) − gLμBB · Ĵ. (3)

The method of employment of the effective Hamiltonian
within the Monte Carlo simulations is detailed in the “Nu-
merical Methods” section of the Supplemental Material [31].

Results. Figure 1(b) shows the Bx − T phase diagram of
LiHoF4. Our results, with ODD terms included and excluded,
both use the exchange parameter Jex = 1.16 mK suggested in
Refs. [28,29] which corresponds to the fitting at low tem-
peratures and high transverse fields. It is easy to see that
the simulation with ODD terms excluded corresponds to the
mean-field calculation, while the results with ODD terms in-
cluded are in close agreement with the experimental results,
for zero and small transverse fields.

Thus, the inclusion of the ODD terms results in good
agreement with experiment at zero transverse field without
the need to choose Jex that is in clear disagreement with
experiment at lower temperatures and higher transverse fields.
For finite but small transverse fields we find that the decrease
in Tc due to the ODD terms is maintained. We emphasize
that our simulation is a classical MC simulation, but one that
allows for varying magnetic moments due to the influence
of transverse fields. Therefore, the Tc(Bx ) dependence in our
results is a consequence of the renormalization of individual
magnetic moments due to the quantum coupling of each of
the Ising doublet states to higher excited electronic states,
as opposed to quantum fluctuations between the two Ising
doublet states. Hence, our model is expected to be valid at low
fields Bx � 1 T where quantum fluctuations are small [30].

Another facet of the incomplete quantitative understand-
ing of this material has to do with the phase diagram of
LiHoxY1−xF4 as a function of the Ho3+ concentration x at zero
applied field. At moderate to high concentrations (x � 0.4)
experiments show a linear dependence of Tc on x, in agree-
ment with the mean-field prediction [15,29,37], whereas the
available numerical work seems to indicate a steeper decline
of Tc as x is reduced [17,38].

We note here that the inclusion of the ODD terms in the
effective low-energy Hamiltonian of the system leads to an
effective three-spin interaction, proportional to the anticorre-
lation of two spins and the existence of the third. We thus
expect this term to depend strongly on Ho concentration,
allowing for its distinction from the excess antiferromagnetic
exchange used to parametrize the system, and for better agree-
ment with the experimental x − T phase diagram. In Fig. 3
we present our results for Tc as function of Ho concentration
x in the presence of ODD terms and exchange parame-
ter Jex = 1.16 mK, and in the absence of ODD terms and
Jex = 3.91 mK. Indeed, the results with ODD terms included
show milder reduction of Tc with decreased concentration, in
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FIG. 3. Transition temperature, Tc, vs Ho3+ concentration, x,
phase diagram from different sources: experimental from Ref. [29]
(triangles), and numerical from Refs. [17,38] (squares) and this
Letter with ODD terms included (circles) and ODD terms ex-
cluded (diamonds). A dotted line shows the mean-field prediction
(linear). Numerical results from this Letter are scaled so that
they agree with the experimental Tc(x = 1) = 1.53 K. The results
with ODD terms included use Jex = 1.16 mK, while the results
with ODD terms excluded use Jex = 3.91 mK, as suggested, e.g., in
Ref. [25].

better agreement with the experimental findings of Tc(x) = x
Tc(x = 1).

An additional microscopic indication of the effect of ODD
terms can be obtained by inspecting the distribution of local
transverse fields. Figure 4 shows the distribution of Bx at the
end of the simulation, when the system has reached thermo-
dynamic equilibrium, for simulations where ODD terms are
included and where they are excluded, yet still considered at
the end of the simulation for the calculation of the effective
transverse fields. It is clear that, at a given temperature, when
ODD terms are included the distribution of Bx becomes wider.
This is expected, since when ODD terms are included, con-
figurations that maximize internal transverse fields become
more energetically favorable and are thus more abundant at
any given temperature.

Lastly, in order to demonstrate the effect of the ODD terms
on the full Bx − T phase diagram we pursue a simplified
approach, assuming the main difference between the FM and
PM phases relevant to the effectiveness of the ODD-induced
mechanism is the width of the distribution of local trans-
verse fields. For simplicity, we assume that the FM phase is
characterized by a vanishing width of this distribution, while
the PM phase is characterized by a finite width h which we
take to be 0.4 T, i.e., the field exerted on a spin by its two
nearest neighbors along the x or y directions while they are
in opposite orientations from each other. Unsurprisingly, this
is also approximately the value of the secondary peaks in
Fig. 4. In both phases the distribution of local transverse fields
is centered around the value of the external field Bx. Hence,
on average half of the spins experience a local transverse
field Bx + h and the other half experience Bx − h. This is true

local Bx

T=1.666 K,
ODD terms included
T=1.660 K,
ODD terms excluded

Nu
m

be
r 

of
 s

pi
ns

FIG. 4. Distribution of local Bx at thermodynamic equilibrium
for system size L = 7 with zero external transverse field and at x = 1.
The temperatures used, around T = 1.66 K, are below Tc when ODD
terms are excluded and above Tc when ODD terms are included. The
black vertical lines at the end of each bar are standard errors. For
each distribution a solid smooth line is plotted as a guide to the eye,
obtained by convolution of the bin values with a Gaussian function.
Where ODD terms are excluded, they are nevertheless considered
at the end of the simulation for obtaining these effective transverse
fields. One can clearly see that when ODD terms are included, the
distribution of Bx is wider than when they are excluded—the peak
at Bx = 0 is lower, compensated by higher values at the exterior.
This is an indication of the ODD induced mechanism at work.
Configurations maximizing internal transverse fields become more
energetically favorable and thus for any given temperature they are
more common.

even though at Bx > 0 the former option is more energetically
favorable, because, owing to the crystal’s mirror symmetry,
any spin which generates a positive local field at some site
also generates a negative local field at another site. Thus, we
estimate the energy reduction of the PM phase due to the ODD
interactions, as �E (Bx ) = E (Bx ) − [E (Bx − h) + E (Bx +
h)]/2, where, for simplicity, we take E (Bx ) to be the average
of the two lowest eigenenergies of (3) with the given Bx.
Assuming that the reduction in Tc due to the inclusion of ODD
terms, �Tc, is proportional to the energy reduction �E (Bx ),
we find the appropriate factor by demanding �Tc(Bx = 0) =
T MF

c (0) − T exp
c (0) ≈ 1.79–1.53 ≈ 0.25 K. Using this scal-

ing factor we apply a Bx-dependent shift �Tc(Bx ) to the
mean-field phase boundary to obtain an approximate phase
boundary with the effect of ODD terms included, as presented
in Fig. 5.

Discussion. We have shown here that the description of
anisotropic dipolar systems by the Ising model, and in the
presence of a transverse field by the transverse field Ising
model, is essentially insufficient. Even for the pure system
off-diagonal dipolar terms induce an effective three-spin in-
teraction, enhancing paramagnetic fluctuations and lowering
the critical temperature. We have analyzed the effect of the

L180413-4



EFFECT OF INTRINSIC QUANTUM FLUCTUATIONS ON … PHYSICAL REVIEW B 105, L180413 (2022)

FIG. 5. FM-PM phase transition line in the temperature-
transverse field plane, as obtained by simple mean field [29] (dashed
gray line) and by including the Tc-reducing effect of ODD terms
(solid red line). Horizontal gray arrows indicate the application of
�Tc(Bx ) to the mean-field result. Triangles denote the same experi-
mental data also shown in Fig. 1.

ODD terms on the relation between critical temperature and
both transverse field and dilution, thereby addressing unan-
swered puzzles regarding discrepancies between theory and
experiment. Our results at small fields are obtained with the
same exchange parameter used to fit the phase transition at
low temperatures and high transverse fields, and produce im-
proved fitting to experimental data at finite transverse fields
and as a function of Ho concentration. Furthermore, applying
a simplified analysis we have also shown that the critical-
temperature-reducing effect of ODD terms is expected to
decrease with an increase of the external transverse field, thus
further strengthening the proposition that ODD terms play a
key role in determining the shape of the phase boundary line.
Thus, our results point to the need to include the quantum fluc-
tuations induced by the off-diagonal terms in any theoretical
consideration, classical and quantum, of anisotropic dipolar
systems. Examples are classical and quantum annealing pro-
tocols, and a comprehensive quantum modeling of the system
required to establish its full phase diagram.
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