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Yielding in an amorphous solid subject to constant stress at finite temperatures
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Understanding the nature of the yield transition is a long-standing problem in the physics of amorphous solids.
Here we use molecular dynamics simulations to study the response of amorphous solids to constant stresses at
finite temperatures. We compare amorphous solids that are prepared using fast and slow quenches and show that
for thermal systems, the steady-state velocity exhibits a continuous transition from very slow creep to a finite
strain rate as a function of the stress. This behavior is observed for both well-annealed and poorly annealed
systems. However, the transient dynamics is different in the latter and involves overcoming an energy barrier.
Due to the different simulation protocol, the strain rate as a function of stress and temperature follows a scaling
relation that is different from the ones that are shown for systems where the strain is controlled. Collapsing the
data using this scaling relation allows us to calculate critical exponents for the dynamics close to yield, including
an exponent for thermal rounding. We also demonstrate that strain slips due to avalanche events above yield
follow standard scaling relations and we extract critical exponents that are comparable to the ones obtained in
previous studies that performed simulations of both molecular dynamics and elastoplastic models using strain-
rate control.
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I. INTRODUCTION

Understanding yield, the transition from elastic to plas-
tic behavior, is of highest importance for modeling material
strength. The importance of yield stems from the fact that
in most technological devices it is important to avoid perma-
nent deformation of machines and materials under mechanical
loads and when such deformation occurs, it is of utmost im-
portance to predict how the material will deform. Recently,
there have been many indications that yield is a nonequilib-
rium phase transition [1–11]. However, the exact nature of this
transition is still under debate. Specifically, it is still not clear
if it is continuous or discontinuous and both scenarios have
been suggested in the literature [1,4,9–14]. A discontinuous
transition is traditionally associated with the formation of a
shear band [12]. However, recently it was suggested in the
context of crystal plasticity that a discontinuous transition
may involve the nucleation of an unstrained particle config-
uration [15,16]. A continuous transition has been associated
with a depinning or a depinninglike scenario [9,17,18]. De-
pinning has been suggested as a model for plastic deformation
where one considers the displacement of the regions where
plasticity occurs as displacements of an elastic manifold
[18,19]. Contrary to the classical models of depinning of elas-
tic manifolds, which usually involve short-range interactions,
in depinning models of plasticity it is assumed that the inter-
actions between the local displacements are long range with
an Eshelby-like field (see detailed explanations in [9,17]).

*Corresponding author: regevid@bgu.ac.il

A popular approach for studying the behavior of such
systems is by molecular dynamics simulations. One of the
main problems in studying the transition is that most of the
numerical studies are performed under constant strain-rate
conditions, either quasistatic, in which tiny strain steps are
followed by energy minimization, or by applying a finite strain
rate in which the material is being deformed continuously
[20–22]. However, such a control scheme may cause the na-
ture of the transition to become less obvious. A more natural
control parameter, one that is commonly used in theories
of plasticity and nonequilibrium phase transitions, such as
depinning theory [18] and some elastoplastic models [17], is
the force or stress. One important difference that was demon-
strated for the dynamics under stress, compared to constant
strain-rate dynamics, is that for small stresses the system even-
tually becomes arrested, while for large stresses the system
flows at a constant strain rate, as has been recently demon-
strated for granular materials [14,23]. For soft systems one can
also expect creep, as has been observed recently [24]. While
certain features of the transition under constant stress have
been studied recently in simulations [14,23,24], the statistics
of fluctuations and the nature of the transition (continuous vs
discontinuous) have only partially been studied for athermal
systems.

For systems subject to constant strain rates, the preparation
protocol strongly affects the dynamics at yield. For solids
prepared by a slow quench, a stress overshoot is typically
observed, while the stress-strain curve of a material prepared
by a fast quench is typically monotonic. We therefore expect
that also under constant stress the preparation protocol will
affect the nature of the yielding point. In solids prepared by
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a slow quench, once the system surpasses the stress at the
stress peak, we expect it to immediately reach a finite strain
rate. The behavior will thus be consistent with a discontinuous
transition. For a solid prepared by a fast quench, we expect
that as the applied stress approaches the steady-state stress
there will be long transients which will become infinite at a
critical stress, which is similar to the behavior observed in
elastic manifolds undergoing depinning.

The shearing protocol may also have an effect on avalanche
statistics, especially when compared to athermal, quasistatic,
strain-controlled simulations. In the latter, the system is
forced to reach mechanical equilibrium after each small strain
step, which applies a very strict stopping condition for any
avalanche that is developed due to an applied strain. In con-
stant stress simulations, a subyield avalanche, triggered by an
increase in the stress, will continue until it becomes arrested
by the next energy barrier.

In this work we use molecular dynamics simulations to
study the dynamics of amorphous solids subject to constant
stresses at finite temperatures and show that the asymptotic
value of the strain rate as a function of the stress exhibits
behavior that is consistent with a continuous transition. How-
ever, we also show that the transient behavior leading to this
steady state is affected by the quench protocol and that the
transient dynamics in a solid that is prepared using a slow
quench is consistent with overcoming a finite energy barrier,
which may indicate a nucleation process typical of discontin-
uous transitions. We also obtain different critical exponents
by studying the scaling of the strain rate and of avalanche
statistics as a function of the applied stress and compare the
values of these critical exponents to the values obtained from
athermal quasistatic dynamics and elastoplastic models.

II. RESULTS

We perform molecular dynamics simulations in two di-
mensions of a 50:50 binary mixture of small and large
particles with a size ratio of 1.4, interacting via a Lennard-
Jones interaction potential. Initial configurations are prepared
by quenching systems from the liquid state to near-zero
temperatures. In order to probe the dependence on sample
preparation we obtain 35 initial amorphous solids using differ-
ent constant cooling rates from the liquid. These systems are
then sheared using the thermostated algorithm of Parrinello
and Rahman [25], which allows shearing at a constant stress,
pressure, and temperature (see the Appendix for further de-
tails). We should note that we control the Cauchy stress rather
than the Piola-Kirchhoff stress that is usually controlled in
constant stress simulations [23,26]. We believe that the former
is more relevant for simulations at finite strain rates and for
that reason preferred to use it.

A. Stress and temperature dependence of the strain rate

To probe the nature of the transition we first study the strain
rate as a function of the stress at the steady state at different
temperatures and using several quenching protocols (see the
Appendix). For initial configurations prepared using a fast
quench, the strain rate at the steady state as a function of the
applied stress is calculated for a system of N = 9216 particles

FIG. 1. Strain rate as a function of the applied stress �, at the
steady state, for a poorly annealed system at different temperatures.
The inset shows the same plot in semilogarithmic scale.

simulated at several low temperatures (see Fig. 1). We observe
that the strain rate exhibits a continuous transition from a
creep regime with a very small strain rate to a postyield regime
with a finite strain rate. The strain rate as a function of stress
exhibits a convex shape which is consistent with the velocity
of elastic manifolds close to a depinning transition at finite
temperatures, with the zero-temperature yielding transition in
models with marginal stability [17], and also with previous
simulation results obtained under constant strain rate [20].

However, the temperature dependence seems to deviate
from what is observed in depinning and in amorphous solids
under strain-rate control. In thermal systems exhibiting a de-
pinning transition, it is known that close to the transition, the
strain rate scales with stress and temperature according to the
scaling relation [27,28]

γ̇ T −ψ ∼ A( f T −ψ/β ), (1)

where A(x) is a nonuniversal scaling function, β is the
velocity (strain-rate) critical exponent (γ̇ ∼ f β at zero tem-
perature), ψ is the thermal rounding critical exponent, and

f = � − �c

�c
(2)

is the reduced stress normalized by a critical shear stress
�c. In Fig. 2 we see that for points in the vicinity of the
transition we can use this relation to collapse the data on a
single master curve, which indicates that the system exhibits
thermal rounding typical of depinninglike critical behavior.
The data collapse is obtained for �c ≈ 0.30, β = 0.47, and
ψ = 0.15. However, if we use the scaling relation

γ̇ ∼ T ψ f β, (3)

with β = 1.23(5), ψ = 0.48(3), and �c = 0.17(8), we get a
much better data collapse that covers a large range of stress
values, as can be seen in Fig. 3. These values are to be
compared to the range of values of β and ψ reported in the lit-
erature, where β was found to be in the range 0.3–0.8 [28–39]
and ψ was found to be in the range 0.14–0.24 for depinning
[28,30,35,40–42] (we are not aware of a measurement of ψ

in amorphous solids). Since this scaling relation describes the
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FIG. 2. Data collapse of the part of the data close to �c from
Fig. 1 onto a single master curve using the scaling relation (1).

behavior on a much larger range, we believe that it is the one
that is more relevant for our data.

The origin of the discrepancy between the behavior that we
observe and what was observed previously is that in elastic
manifolds undergoing a depinning transition [35,41–43] and
amorphous solids under shear at a constant strain rate [20,44]
the velocity or strain rate is insensitive to the temperature
for large forces or stresses. However, here we observe a dif-
ferent behavior where the dependence of the strain rate on
temperature becomes stronger for larger stresses (Fig. 1). We
believe that the main difference stems from the fact that in
the constant stress simulations, we are controlling the con-
fining pressure rather than the volume, which is typically
constant in simulations under constant strain rate. This means
that, contrary to most simulations performed under a constant
strain rate, the material is not incompressible and the density
changes during the simulation. It is known that plastic events
become softer when materials are allowed to dilate (see the
theoretical explanation in [45]) and the fact that the density is
allowed to change means that steady states subject to different
temperatures will be different even for the same applied stress.

FIG. 3. Data collapse of the data from Fig. 1 onto a single master
curve using the scaling relation (3). The solid line is a fit to the
function a f β . The inset shows the same plot in semilogarithmic
scale.

FIG. 4. Effect of the cooling rate on the steady-state strain rate at
T = 10−4. We can see that even for a very slow quench the transition
from creep to a flowing phase is continuous. The inset shows the
same plot in semilogarithmic scale.

We next study the effect of the quenching protocol on the
asymptotic (steady-state) strain rate. We can see that even at
a very low temperature T = 1×10−4 the steady state exhibits
a seemingly continuous transition (Fig. 4), in contradiction to
the strong effect of the quenching protocol on the yield stress
in simulations at constant strain rates. Below we show that this
difference stems from the effect of thermal fluctuations on the
transient dynamics.

B. Effect of different quenching protocols

As we mentioned in the Introduction, the mechanical
response of amorphous solids is highly dependent on the
preparation protocol used, which should affect the nature of
the transition. However, in the preceding section we have
shown that the steady-state strain rate always exhibits a con-
tinuous transition independent of the quenching protocol. To
understand this observation we study the transient dynam-
ics. Figure 5 shows the strain rate as a function of time for
different stresses (different colors) and starting from samples
prepared using different initial quenches. As we can see, the
quench rate has two distinct effects on the dynamics: For a
slow quench [Fig. 5(a)] a larger stress is needed to obtain a
flowing steady state compared to the fast quench [Fig. 5(b)]
and the spacing between the different curves becomes larger.
We can also observe that for stresses close to the transition
for which the system eventually flows, the strain rate exhibits
transient behavior which involves a temporary decrease fol-
lowed by an increase, indicating a possible temporary arrest
(visually, the strain rate as a function of time curves up-
ward). We believe that this is due to the system becoming
temporarily arrested by a stress-energy barrier, related to the
stress peak observed in shearing of well-annealed amorphous
solids, and that this barrier is eventually overcome by thermal
fluctuations, which leads to the observed continuous change
in the steady-state strain rate. Therefore, we conclude that
for a constant stress and constant confining pressure, the
preparation protocol of the initial configuration affects the
transient behavior but not the transition in the steady-state
strain rate, which is always continuous. In order to further
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FIG. 5. Strain rate as a function of time for simulations of a
binary mixture. Different colors correspond to different stresses.
The stress changes (from bottom to top) from � = 0.02 (cold) to
� = 0.48 (warm) in steps of 0.02. The black line represents the
transient strain rate at approximately �c. (a) Results for a sample
prepared using the slowest quench protocol. One can see that for the
slow quench, the system becomes arrested for higher stress values
and exhibits a transient decrease in the strain rate followed by an
increase towards the steady state. (b) Results for samples prepared
using the fastest quench protocol.

compare our results to simulations performed using a constant
strain rate, we also study avalanche statistics, as is discussed
below.

C. Avalanche size distribution

One of the hallmarks of critical behavior is the appearance
of fluctuations on all scales, which in systems exhibit-
ing avalanches is manifested in power-law scaling of the
avalanche size distribution [46]

D(S) ∼ S−τD(−S/Smax). (4)

Here D(x) is a nonuniversal scaling function, which is con-
stant for vanishing x values, Smax is a cutoff avalanche size
which diverges at the critical stress �c for an infinite system,
and τ is the avalanche size exponent. For systems under con-
stant stress, a measure of the avalanche size is the amount of
strain experienced after an event in which the system loses
stability, while for a system under strain-rate control, the

FIG. 6. Avalanche sizes obtained from the thermostated simula-
tions. The red horizontal line represents the average strain rate 〈γ̇ 〉
and the colored parts of the curve represent avalanches. An avalanche
duration is the time that the strain rate spends above the average
value.

avalanche size is the amount of stress released during such
an event.

To extract avalanche sizes in the thermal stress-controlled
systems we use thresholding; we consider as part of the
avalanche only γ̇ values larger than the time-averaged
strain rate γ̇th = 〈γ̇ (t )〉t . An avalanche size is then defined
as the total amount of strain increase during an interval
in which the strain rate is continuously larger than the
average (this is illustrated in Fig. 6). This total train in-
crease during the avalanche is then calculated using the
integral

S =
∫ t2

t1

[γ̇ (t ) − γ̇ (t )th]dt, (5)

where t1 is a point in time where γ̇ becomes larger
than γ̇th and t2 is the first point after t1 at which γ̇ becomes
lower than γ̇th.

FIG. 7. Avalanche size distribution at � = 0.5 for N = 9216 at
T = 10−4.
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FIG. 8. (a) Avalanche size distributions for different system sizes
L (L = √

N is the linear system size). (b) Finite-size scaling of the
avalanche size distribution exhibiting data collapse.

As we can see in Fig. 7, we find that for � = 0.5 (recall
that �c ≈ 0.17) the avalanche sizes are power-law distributed
with a cutoff. To extract the exponent τ we fit the linear
part of the distribution. We find τ = 1.20(3), which is similar
to the values found in both overdamped molecular dynam-
ics simulations and elastoplastic models [21,47,48]. We next
study the finite-size dependence of the distribution (Fig. 8)
and show that the distributions obtained for different system
sizes L = 32, 96, 174 can be collapsed onto one master curve
using the relation [49,50]

D(S) = S−τG(S/LD f ). (6)

The data collapse is obtained using the exponents τ = 1.1(3)
and D f = 1.23(5), where the latter is the fractal dimension
of the avalanches. For comparison, note that the fractal di-
mension was estimated to be D f ∼ 1.1 in elastoplastic models
[48].

Our observation that the statistics under stress control are
described by the same probability distribution function with
similar exponents as under strain-rate control was not com-
pletely expected since typical stress-controlled avalanches

include several strain-controlled avalanches and are therefore
typically larger.

III. DISCUSSION

Studying the dynamics of amorphous solids under constant
stress at low temperatures, we have shown that the steady-
state strain rate exhibits a continuous transition from creep
to flow at a finite strain rate as a function of the stress. We
have also found that for our thermal system, the continu-
ity of the transition does not depend on the preparation of
the amorphous solids from the liquid. We observed that the
strain rate is a convex function of the stress, which may be
a result of thermal rounding or a result of marginal stabil-
ity (or both), and for systems prepared using a fast quench,
we have shown that the strain rate as a function of stress,
for different temperatures, can be collapsed onto one master
curve. For stresses and strain rates close to yield, we collapsed
the data using a scaling relation that was used to describe
thermal depinning transitions, while a different scaling rela-
tion was shown to collapse the entire range of strain rate,
stress, and temperatures. The different scaling behavior was
ascribed to a different temperature dependence than was ob-
served in simulations of amorphous solids with strain-rate
control and we ascribed the differences to the use of NPT
rather than the NV T ensemble used in simulations subject
to constant strain rate. The data collapse was used to extract
the strain-rate exponent β, the thermal rounding exponent ψ ,
and the yield stress �c. We further studied the differences
in the transient behavior between fast and slow quench rates
and showed that for well-annealed initial configurations the
transient strain rate is a nonmonotonic function of time, in-
dicating a temporary arrest due to the existence of an energy
barrier. This conclusion is in agreement with previous results
that showed that the yielding transition exhibits properties of
a discontinuous transition [1] and with more recent results
obtained for constant strain-rate simulations at zero temper-
ature, which were shown to exhibit a transition from brittle
to ductile yielding [2]. However, we should note that in our
simulations these effects were only transient and the steady-
state strain rate always increased continuously from zero even
for solids prepared by a slow quench. Finally, we studied the
avalanche statistics at low temperatures and obtained criti-
cal exponents that are consistent with results obtained from
strain-rate-controlled simulations and elastoplastic models.
Further studies will focus on better understanding the origin of
the differences between the temperature sensitivity observed
in our stress-controlled simulations and simulations and ex-
periments of systems under strain-rate and stress control as
well as on the statistics of avalanches close to the yield
point.
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APPENDIX: METHODS

1. Molecular dynamics model

We simulated a 50:50 binary mixture of large and small
particles interacting via Lennard-Jones potentials with system
sizes of L = 32, 96, and 174 in two dimensions (number of
particles is N = L2). The interatomic potential is given by

Vαβ (r) = 4εαβ

[(
σαβ

r

)12

−
(

σαβ

r

)6]
(r < rc), (A1)

where α, β ∈ {A, B}. We used εAA = εAB = εBB = 1.0, σAA =
1.0, σAB = 1.2, and σBB = 1.4 and the potential is truncated
and shifted at rc = 2.5σαβ . All simulations are reported in
Lennard-Jones units where time is measured with respect to
τ =

√
mσ 2/ε. In all of the simulations we used the LAMMPS

molecular dynamics package [51].
To prepare the initial samples from the quench, we

followed a protocol that is based on standard experimental
procedures used to prepare bulk metallic glasses. Our protocol
followed three steps. (i) A fluid was first equilibrated at a
high temperature of T = 1.0. (ii) The final configuration was
cooled to low temperature T = 10−4 with different cooling
rates ranging from 10−3 (fastest) to 10−5 (slowest). (iii)
The sample was then equilibrated at fixed low temperatures
T = 2×10−4, 6×10−4, 1×10−3, 2×10−3, 4×10−3, 6×10−3,

8×10−3, 1×10−2 and finally quenched to zero temperature
using the fast inertial relaxation engine algorithm. The system
was then sheared at a finite constant temperature using
Paranillo-Rahman. We tested the sensitivity of the results
to the Tdamp parameter (a parameter controlling the rate of
equilibration) and found that it did not significantly affect
the results for values less than 100 times the time step. We
therefore set Tdamp equal to ten times the time step.

2. Constant stress molecular dynamics simulations

In order to apply a constant stress, we use a LAMMPS imple-
mentation of the method suggested by Parrinello and Rahman
[25]. Here we provide a brief description of this method.
In the Parrinello-Rahman algorithm, the particles are subject

to periodic boundary conditions confining them to reside on
a parallelogram-shaped cell with a shape that is defined by
the two vectors (
̂1, 
̂2), where each vector 
̂i represents the
direction and the length of an edge of the simulation parallel-
ogram. The deformation of the system is represented by the
matrix L = [
̂1, 
̂2], where each 
̂i is a column vector of the
matrix. In order to allow the system to become strained and
reach the target stress, the matrix L (and thus the shape and
size of the simulation cell) is allowed to vary. The strain is
calculated by comparing L to a reference state L0 = [
̂0

1, 
̂
0
2].

The relation between the reference and current configuration
is given by the strain gradient matrix F : L = FL0, which also
provides a connection between the coordinates x in the actual
configuration and coordinates X at the reference (prestrained)
configuration x = FX , assuming a constant strain along the
simulation box. The vectors 
̂i are used to scale the coordi-
nates and momenta ri = Lsi and pi = Lπi. These, as well as
the deformation gradient and the volume, are then used in the
modified Hamiltonian

H = VN (. . . , FL0si, . . .) +
N∑

i=1

(FL0πi ) · (FL0πi )

2mi

+
∏ ·∏

2M
− 1

2
V0(σi j + pδi j )(F

T F − J )i j − p(V −V 0),

(A2)

where M is a masslike quantity that gives “inertia” to the
stain gradient F , V 0 is the volume, σi j is the external stress
applied on the system, and p is the applied hydrostatic pres-
sure. Hamilton’s equations for the scaled particle positions
and momenta as well as the deformation gradient and its
“momentum”

ṡi = ∂H
∂πi

, π̇i = −∂H
∂si

, Ḟi = ∂H
∂�

, �̇ = −∂H
∂Fi

(A3)

are then solved for the predecided stress, pressure, and tem-
perature. Here we used a variant of this algorithm (also
implemented in LAMMPS) which controls the Cauchy stress
rather than the Piola-Kirchhoff stress [26].
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