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Numerical observation of a glassy phase in the three-dimensional Coulomb glass
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The existence of an equilibrium glassy phase for charges in a disordered potential with long-range electrostatic
interactions has remained controversial for many years. Here we conduct an extensive numerical study of the
disorder-temperature phase diagram of the three-dimensional Coulomb glass model using population annealing
Monte Carlo to thermalize the system down to extremely low temperatures. Our results strongly suggest that,
in addition to a charge order phase, a transition to a glassy phase can be observed, consistent with previous
analytical and experimental studies.
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I. INTRODUCTION

The existence of disorder in strongly interacting elec-
tron systems—which can be realized by introducing ran-
dom impurities within the material, e.g., a strongly doped
semiconductor—plays a significant role in understanding
transport phenomena in imperfect materials and bad metals,
as well as in condensed matter in general. When the density of
impurities is sufficiently large, electrons become localized via
the Anderson localization mechanism [1] and the long-range
Coulomb interactions are no longer screened. This, in turn,
leads to the depletion of the single-particle density of states
(DOS) near the Fermi level, as first proposed by Pollak [2]
and Srinivasan [3], thus forming a pseudogap. Later, Efros and
Shklovskii [4] (ES) solidified this observation by describing
the mechanisms involved in the formation of this pseudogap.
The ES theory explains how the hopping (DC conductivity)
within a disordered insulating material is modified in the
presence of a pseudogap, also referred to as the “Coulomb
gap.” Numerous analytic studies have predicted, [5–14], as
well as experimental studies observed [15–29], the emergence
of glassy properties in such disordered insulators, leading to
the so-called “Coulomb glass” (CG) phase. Experimentally,
to date, none of the aforementioned studies have observed a
true thermodynamic transition into a glass phase but rather
have found evidence of nonequilibrium glassy dynamics, i.e.,
dynamic phenomena that are suggestive of a glass phase, such
as slow relaxation, aging, memory effects, and alterations in
the noise characteristics. Theoretically, more recent seminal
mean-field studies by Pankov and Dobrosavljević [12], as well
as Müller and Pankov [30], have shown that there exists a
marginally stable glass phase within the CG model whose
transition temperature Tc decreases as Tc ∼ W −1/2 for large
enough disorder strength W , and is closely related to the for-
mation of the Coulomb gap. Whether the results of the mean-
field approach can be readily generalized to lower space
dimensions is still uncertain. However, as we show in this
work, the mean-field results of Ref. [12] quantitatively agree

with our numerical simulations in the charge-ordered regime
(see Fig. 1) with similar values for the critical disorder Wc

where the charge-ordered phase is suppressed. The critical
temperatures Tc for the glassy phase, on the other hand, are
substantially smaller than in the mean-field predictions. This,
in turn, suggests that the mean-field approach of Ref. [12] in-
cludes the fluctuations of the uniform charge order collective
modes, but not of the glassy collective modes.

There have been multiple numerical studies that attempt
to both understand the DOS, as well as the nature of the
transitions of the CG model. In fact, there has even been
some slight disagreement as to what the theoretical model
to simulate should be with some arguing for lattice disorder
to introduce randomness into the model [31,32] and others
suggesting that the disorder should be introduced via random
biases. Numerically, a Coulomb gap in agreement with the ES
theory has been observed in multiple studies. However, there
is no consensus in the vast numerical work [31,33–52] on the
existence of a thermodynamic transition into a glassy phase.
Nonequilibrium approaches suggest the existence of glassy
behavior; however, thermodynamic simulations have failed to
detect a clear transition.

In this paper we investigate the phase diagram of the CG
model using Monte Carlo simulations in three spatial dimen-
sions. For the finite-temperature simulations we make use
of the population annealing Monte Carlo (PAMC) algorithm
[53–57] which enables us to thermalize for a broad range of
disorder values down to unprecedented low temperatures pre-
viously inaccessible. In addition, we argue that the detection
of a glass phase requires a four-replica correlation length, as
commonly used in spin-glass simulations in a field [58,59].
Our main result is shown in Fig. 1. Consistently with previous
numerical and analytical studies [12,47,60] we find a charge
ordered (CO) phase for disorders lower than Wc = 0.131(2)
where electrons and holes form a checkerboard-like crystal.
This is in close analogy with the classical Wigner crystal [61]
which happens at low electron densities where the potential
energy dominates the kinetic energy resulting in an ordered
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FIG. 1. Phase diagram of the three-dimensional Coulomb glass
model. There is a charge order (CO) phase for W � 0.131 where
electrons and holes form a checkerboard-like crystal. For W � 0.131
the system undergoes a glassy transition into the Coulomb glass
(CG) phase, albeit at considerably lower temperatures than in the
CO phase. The dashed lines indicate extrapolations where numerical
simulations are not available.

arrangement of the charges. It should however be noted that
at W = 0 the lattice model, unlike in the continuum case,
is not a standard Wigner crystal [62] because the system
exhibits a pseudogap in the excitation spectrum (unrelated to
the Coulomb gap) prior to entering the charge-ordered phase.
For disorders larger than Wc we find strong evidence of a
thermodynamic glassy phase restricted to temperatures which
are approximately one order of magnitude smaller compared
to the CO temperature scales. This, in turn, suggests that,
indeed, a thermodynamic glassy phase can exist in experimen-
tal systems where typically off-equilibrium measurements
are performed. It also resolves the long-standing controversy
where numerical simulations were unable to conclusively
detect a thermodynamic glassy phase while mean-field theory
predicted such a phase. We note that for the disorder strength
values studied, we are unable to discern a monotonic decrease
in the critical temperature, as suggested by mean-field theory.

The paper is structured as follows. In Sec. II we introduce
the CG model, followed by the details of the simulation in
Sec. III. Section IV is dedicated to the results of the study.
Concluding remarks are presented in Sec. V.

II. MODEL

The CG model in three spatial dimensions is described by
the Hamiltonian

H = e2

2κ

∑
i �= j

(ni − ν)
1

|ri j | (n j − ν) +
∑

i

niφi, (1)

where κ = 4πε0, ni ∈ {0, 1}, and ν is the filling factor. The
disorder φi is an on-site Gaussian random potential, i.e.,
P (φi ) = (2πW 2)−1/2 exp (−φ2

i /2W 2). At half filling (ν =
1/2) the CG model can conveniently be mapped to a long-
range spin model via si = (2ni − 1). The Hamiltonian can be
made dimensionless by choosing the units such that e2/κ = 1

and a = 1 in which a is the lattice spacing. We thus simulate

H = 1

8

∑
i �= j

sis j

|ri j | + 1

2

∑
i

siφi, (2)

where si ∈ {±1} represent Ising spins.

III. SIMULATION DETAILS

In order to reduce the finite-size effects we use periodic
boundary conditions. Special care has to be taken to deal with
the long-range interactions. We make infinitely many periodic
copies of each spin in all spatial directions, such that each spin
interacts with all other spins infinitely many times. We use
the Ewald summation technique [63,64], such that the double
summation in Eq. (2) can be written in the following way:

1

2

N∑
i=1

N∑
j=1

sis j
[

f (1)
i j + f (2)

i j + f (3)
i j + f (4)

i j

]
, (3)

where the terms fi j are defined as

f (1)
i j = 1

4

′∑
n

erfc(α|ri j + nL|)
|ri j + nL| , (4)

f (2)
i j = π

N

∑
k �=0

e−k2/4α2

k2
cos(kri j ), (5)

f (3)
i j = π

3N
ri · r j, (6)

f (4)
i j = − α

2
√

π
δi j . (7)

Here, erfc is the complimentary error function [65], α is a
regularization parameter, and k = 2πn/L is the reciprocal
lattice momentum. The vector index n in Eq. (4) runs over the
lattice copies in all spatial directions and the prime indicates
that n = 0 is not taken into account in the sum when i = j.
For numerical purposes, the real and reciprocal space sum-
mations, i.e., Eqs. (4) and (5), respectively, are bounded by
|ri j + nL| < rc and k < 2πnc/L. The parameters α, rc, and
nc are tuned to ensure a stable convergence of the sum. We
find that 2 < α < 4, nc � 4L, and rc = L/2 are sufficient for
the above purpose.

We use population annealing Monte Carlo (PAMC)
[53–57] to thermalize the system down to extremely low
temperatures. In PAMC, similarly to simulated annealing
(SA) [66], the system is equilibrated toward a target tempera-
ture starting from a high temperature following an annealing
schedule. PAMC, however, outperforms SA by introducing
many replicas of the same system and thermalizing them in
parallel. Each replica is subjected to a series of Monte Carlo
moves and the entire pool of replicas is resampled according
to an appropriate Boltzmann weight. This ensures that the sys-
tem is equilibrated according to the Gibbs distribution at each
temperature. For the simulations we use particle-conserving
dynamics to ensure that the lattice half filling is kept constant,
together with a hybrid temperature schedule linear in β and
linear in T [57]. We use the family entropy of population
annealing [55] as an equilibration criterion. Hard samples
are resimulated with a larger population size and number of
sweeps until the equilibration criterion is met. Note that we
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TABLE I. PAMC simulation parameters used for the finite-
temperature simulations in the CO phase (W � 0.131). L is the linear
system size, R0 is the initial population size, M is the number of
Metropolis sweeps, T0 is the lowest temperature simulated, NT is
the number of temperatures, and Nsa is the number of disorder re-
alizations. Note that the values in the table vary slightly for different
values of the disorder W .

L R0 M T0 NT Nsa

4 2 × 104 10 0.05 401 5000
6 5 × 104 10 0.05 601 5000
8 1 × 105 20 0.05 801 2000
10 2 × 105 20 0.05 1001 1000
12 5 × 105 30 0.05 1201 500

have independently examined the accuracy of the results, as
well as the quality of thermalization for system sizes up to
L = 8 using parallel tempering Monte Carlo [67]. Both data
from PAMC and parallel tempering Monte Carlo agree within
error bars. We investigate the phase diagram of the CG model
using fixed values of the disorder width, i.e., vertical cuts on
the W -T plane. Further details of the simulation parameters
can be found in Tables I and II for the CO and CG phases,
respectively.

IV. RESULTS

A. Charge-ordered phase

To characterize the CO phase, we measure the specific heat
capacity cv = Cv/N (only used to extract critical exponents;
see Appendix B for details), staggered magnetization

ms = 1

N

N∑
i=1

σi, (8)

where σi = (−1)xi+yi+zi si and N = L3 the number of spins, as
well as the disconnected and connected susceptibility

χ̄ = N
[〈

m2
s

〉]
, (9)

χ = N
[〈

m2
s

〉 − 〈|ms|〉2
]
. (10)

In addition, we measure the Binder ratio g [68],

g = 1

2

(
3 −

[〈
m4

s

〉]
[〈

m2
s

〉]2

)
, (11)

TABLE II. PAMC simulation parameters used for the finite-
temperature simulations in the CG phase (W > 0.131). For details
see the caption of Table I. Note that the values in the table vary
slightly for different values of the disorder W .

L R0 M T0 NT Nsa

4 2 × 104 20 0.004 401 100000
6 5 × 104 30 0.004 601 50000
8 1 × 105 40 0.004 801 30000
10 2 × 105 60 0.004 1001 20000
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FIG. 2. Finite-size correlation length per system size ξ/L ver-
sus temperature T for various disorder strengths. (a) No disorder,
(b) small disorder (W = 0.05). In both cases we observe a crossing
of the data for different system sizes, suggesting a phase transition
between a disordered electron plasma and a CO phase. (c), (d) Finite-
size scaling analysis used to determine the best estimates for the
critical temperature Tc, as well as the critical exponent ν at the
aforementioned disorder values. Note that the smallest system size is
left out of the analysis for better accuracy. The transition temperature
Tc of the CO phase decreases as the disorder grows.

and the finite-size correlation length ξ/L [69–71], defined via

ξ = 1

2 sin (|kmin|/2)

(
χ (0)

χ (kmin)
− 1

)1/2

, (12)

where kmin = (2π/L, 0, 0) is the smallest nonzero wave
vector and

χ (k) = 1

N

∑
i j

[〈σiσ j〉] exp(ik · ri j ) (13)

is the Fourier transform of the susceptibility. Furthermore,
〈· · · 〉 represents a thermal average and [· · · ] is an average
over disorder. According to the scaling ansatz, in the vicinity
of a second-order phase transition temperature Tc, any di-
mensionless thermodynamic quantity such as the Binder ratio
and the finite-size correlation length divided by linear system
size will be a universal function of x = L1/ν (T − Tc), i.e.,
g = F̃g(x) and ξ/L = F̃ξ (x), where ν is a critical exponent.
Therefore, an effective way of probing a phase transition is
to search for a point where g or ξ/L data intersect. Given the
universality of the scaling functions F̃g and F̃ξ , if one plots
g or ξ/L versus x = L1/ν (T − Tc), the data for all system
sizes must collapse onto a common curve. Because we are
dealing with temperatures close to Tc, we may approximate
this universal curve by an appropriate mathematical function
such as a third-order polynomial f (x) = P3(x) in the case of
ξ/L or a complimentary error function f (x) = 1

2 erfc(x) when
studying the Binder cumulant. Hence, by fitting f (x) to the
data with Tc and ν as part of the fit parameters, we are able
to determine their best estimates. The statistical error bars of
the fit parameters are calculated by bootstrapping over the
disorder realizations. In Fig. 2 we show the simulation data
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TABLE III. Critical parameters of the plasma-CO phase transition at different disorder values. The exponents, except for ν, change with
disorder. Note that at T = 0, the exponents α and γ have been calculated in a different way (see text in Appendix B).

Model W Tc ν α/ν β/ν γ̄ /ν γ /ν

CG 0.000 0.1284(1) 0.76(4) 0.550(2) 0.42(1) 2.41(1) 2.05(2)
CG 0.050 0.1187(3) 0.87(14) 0.418(25) 0.305(19) 2.67(2) 1.79(3)
CG 0.131(2) 0.000 0.71(5) 0.006(31) 0.154(5) 2.88(1) 1.55(4)

as well as the finite-size scaling (FSS) plots for ξ/L at two
different disorder values. Crossings can clearly be observed
which signals a phase transition into the CO phase. Simulating
multiple values of W , we observe a phase transition between a
disordered electron plasma and a CO phase for W < 0.131(2),
consistent with previous studies [12,47,60]. The CO phase is
a checkerboard-like crystal [61], where electrons and holes
form a regular lattice as the potential energy dominates the
kinetic energy at low temperatures.

We have also conducted zero-temperature simulations us-
ing simulated annealing to determine the zero-temperature
critical disorder Wc that separates the CO from the CG phase.
We average over Nsa = 2048 different disorder realizations
for disorders W > 0.10 and Nsa = 512 for W � 0.10. Each
disorder realization is restarted at least at 20 different initial
random spin configurations and at each temperature step
equilibrated Neq Monte Carlo steps. If at least 15% of the
runs reach the same minimal energy configuration, we assume
that the chosen Neq was large enough and that the reached
configuration is likely the ground state. If less than 15% of the
configurations reach the minimal state, we increase Neq and
rerun the simulation until the 15% threshold is achieved. For
the largest simulated system size (L = 8) and large disorders,
typical equilibration times are Neq = 227 Monte Carlo sweeps.

To estimate Wc, we use the Binder ratio defined in Eq. (11)
which by definition quickly approaches 1 when T → 0 within
the CO phase. Therefore, in order to retain a good resolution
of a putative transition, we use an alternative quantity � which
is defined in the following way [49]:

� = − ln(1 − g). (14)

Close to Wc, we may assume the following finite-size scaling
behavior for �:

� = F̃�[L1/ν (W − Wc)]. (15)

As g is restricted to 0 � g � 1 with a step-function-like shape,
we may use a complementary error function 1

2 erfc( x−μ

σ
) to

represent the universal scaling function F̃� in which x =
L1/ν (W − Wc) and Wc, ν, μ, σ are the fit parameters. The fit
is shown in Fig. 3 where we obtain Wc = 0.131 ± 0.002 and
ν = 0.71 ± 0.05.

In Table III (Appendix B) we list the values of the critical
exponents for the plasma-CO phase transition for various
disorder values W after a comprehensive FSS analysis of
different observables. Note that we have used the methods de-
veloped in Ref. [72] to compute the exponents α and γ at T =
0. An important observation one can promptly make is that
the exponents—except for ν which is universal—vary with
disorder. This can be attributed to the fact that the perturba-
tions at large length scales are contested between random-field
fluctuations which have static nature and dynamic thermal

fluctuations [73–75]. At W = 0, the perturbations are purely
thermal, while at T = 0, the random field completely domi-
nates. At such large length scales, the interactions within the
charge-ordered phase resemble the random-field Ising model
(RFIM) [76–79] with short-range bonds; namely, screening
takes place. This can be understood by remembering that the
dynamics of the system is constrained by charge conservation.
In the spin language, excitations are no longer spin flips
but spin-pair flip-flops owing to the conservation of total
magnetization. For instance, one can create a local excitation
while preserving charge neutrality by moving a number of
electrons out of a subdomain in the CO phase. The excess
energy of such a domain scales like its surface, similarly to the
short-range ferromagnetic Ising model. It is worth mentioning
that the Imry-Ma [80] picture gives a lower critical dimension
of 2 for discrete spins with short-range interactions. Hence
three-dimensional Ising spins, such as in the RFIM, are stable
to small random fields as we also find here.

Returning to the discussion of the critical exponents, we
note that scaling relations such as

γ = β(δ − 1) = (2 − η)ν, (16)

as well as the modified hyperscaling relation

(d − θ )ν = 2 − α = 2β + γ , (17)
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FIG. 3. Zero-temperature simulation results for the plasma-CO
phase transition. The quantity � defined in Eq. (14) is used to
perform a finite-size scaling analysis. We conclude that the CO
phase terminates at Wc = 0.131(2). The statistical error bars are
estimates by bootstrapping over disorder instances. erfc(x) is the
complimentary error function which is used to fit the Binder ratio
data (see text).
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can be utilized to obtain estimates for the critical exponents η,
θ , and δ. For instance, using the values in Table III, we see that
η(W = 0.0) = −0.05(2) and η(W = 0.05) = 0.22(1). Near
criticality, the correlation functions decay as a power of dis-
tance, i.e., G(x) ∼ 1/|x|d−2+η. The fact that the exponent η is
slightly negative for W = 0.0 shows that correlation between
the spins remains in effect over a much longer distance in the
absence of disorder. Physically this is plausible, as disorder
tends to decorrelate the spins.

B. Coulomb glass phase

To examine the existence of a glassy phase in the CG
model, we measure the spin-glass correlation length defined
in Eq. (12), however, for a spin-glass order parameter, namely

ξSG = 1

2 sin (|kmin|/2)

(
χSG(0)

χSG(kmin)
− 1

)1/2

. (18)

Here, the spin-glass susceptibility χSG has the following defi-
nition [71]:

χSG(k) = 1

N

N∑
i=1

N∑
j=1

[(〈sis j〉 − 〈si〉〈si〉)2]eik·(ri−r j ). (19)

It is important to note that 〈si〉 �= 0 because the Hamiltonian
[Eq. (2)] is not symmetric under global spin flips. Therefore,
at least four replicas are needed to compute the connected
correlation function in Eq. (19). We start with the partition
function of the system, using Eq. (2):

Z =
∑
{si}

exp

⎡
⎣−β

⎛
⎝1

8

∑
i �= j

sis j

|ri j | + 1

2

∑
i

siφi

⎞
⎠

⎤
⎦. (20)

We may now expresses any combination of the spin moments
in terms of the replicated spin variables sα

i in the following
way: 〈

s11 . . . s1k1

〉l1
. . .

〈
sm1 . . . smkm

〉lm
= 1

Zn

∑
{sα

i }
e
−β

n∑
α=1

H[{sα
i }]

s1
11

. . . s1
1k1

· · · sn
m1

. . . sn
mkm

= 1

n!

n∑
α1...αn

〈
sα1

11
. . . sα1

1k1
· · · sαn

m1
. . . sαn

mkm

〉
, (21)

where n = l1 + · · · + lm is the total number of replicas and
replica indices α1, . . . , αn are all distinct. As a special case,
one can show

(〈sis j〉 − 〈si〉〈s j〉)2 = 2

4!

4∑
α,β

〈
sα

i sα
j sβ

i sβ
j

〉

− 2

4!

4∑
α,β,γ

〈
sα

i sα
j sβ

i sγ
j

〉

+ 1

4!

4∑
α,β,γ ,λ

〈
sα

i sβ
i sγ

j sλ
j

〉
. (22)

Using the above expression, the spin-glass susceptibility
[Eq. (19)] can be written in terms of the replica overlaps as
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FIG. 4. Spin-glass correlation length divided by system size
ξSG/L calculated using two replicas at W = 0.8 versus temperature
T . No crossing is observed down to very low temperatures. The
inset shows the same quantity using four replicas where a transition
is clearly visible. Here, data points for different system sizes cross
approximately at the temperature indicated by the dashed line. This
suggests that in the presence of external fields four-replica quantities
need to be used to characterize phase transitions in glassy systems.

follows:

χSG(k) = N

6

4∑
α<β

[〈qαβ (k)q∗
αβ (k)〉]

− N

6

4∑
α

4∑
β<γ

[〈qαβ (k)q∗
αγ (k)〉]

+ N

3

4∑
α<β

4∑
γ<λ

[〈qαβ (k)q∗
γ λ(k)〉]. (23)

Once again, the indices α, β, γ , and λ must be distinct.
Here, q∗

αβ (k) represents the complex conjugate of qαβ (k), and
qαβ (k) is the Fourier-transformed spin overlap, i.e.,

qαβ (k) = 1

N

N∑
i=1

sα
i sβ

i eik·ri . (24)

To underline the significance of this matter, we have shown
in Fig. 4 the spin-glass correlation length calculated using
two replicas, as has been done in some previous numerical
studies of the CG [31,81]. The inset shows the same quantity
computed using four replicas. While the two-replica version
of the finite-size correlation length shows no sign of a CG
transition, the four-replica expression captures the existence
of a phase transition into a glassy phase.

We have performed equilibrium simulations for W ∈
{0.15, 0.30, 0.50, 0.80, 1.2}. In Fig. 5 we plot the four-replica
spin-glass correlation length as a function of temperature at
selected disorder values. Our results strongly suggest that
there is a transition to a glassy phase which persists for
relatively large values of the disorder. This is significant in
the sense that it confirms the phase transition via replica
symmetry breaking as predicted by mean-field theory. The
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FIG. 5. Spin-glass finite-size correlation length ξSG/L as a func-
tion of temperature T at various disorder strengths W . (a) W = 0.15,
(b) W = 0.30, (c) W = 0.50, and (d) W = 1.20. For W � 0.15 the
data for different system sizes cross, indicating a plasma-CG phase
transition. Corrections to scaling must be considered to reliably
estimate the value of the critical temperature Tc (see text for details).

nontriviality of our findings can be better understood if one
juxtaposes the CG case with that of finite-dimensional spin
glasses lacking time-reversal symmetry due to an arbitrarily
small external field where the existence of de Almeida–
Thouless [82] transition, except for a few rare cases [83,84],
has been ruled out by numerous studies [58,85–89]. For the
random-field Ising model the droplet picture of Fisher and
Huse [85,86] can be invoked to show the instability of the
glass phase to infinitesimal random fields. Yet, the CG model
is different in two significant ways: typical compact domains
are not charge neutral, and therefore cannot be flipped, and
the long range of the interactions, while it does not affect
the domain wall formation energy in the ordered phase, may
be significant in the more complex domain formation of
the glass phase. It is worth emphasizing here that proper
equilibration is key in observing a glassy phase in the CG
simulations. For instance, in Fig. 8 of Appendix A we show an
example of a simulation where the crossing in the spin-glass
correlation length is completely masked due to insufficient
thermalization.

Some corrections to scaling must be considered in the anal-
ysis in order to estimate the position of the critical temperature
and the values of the critical exponents. In the vicinity of the
critical temperature Tc and to leading order in corrections to
scaling, we may consider the following FSS expressions for
the spin-glass susceptibility χSG and the finite-size two-point
correlation length divided by the linear size of the system,
ξSG/L:

χSG ∼ CχL2−η[1 + AχL−ω + BχL1/ν (T − Tc)], (25)

ξSG/L ∼ Cξ + Aξ L−ω + Bξ L1/ν (T − Tc), (26)

where Aχ , Bχ , Cχ , Aξ , Bξ , and Cξ are constants. In order to find
the critical temperature Tc as well as the critical exponents ν,
η, ω, we perform the following procedure.

(i) Estimation of Tc: Given any pair of system sizes
(L1, L2) we have

L1 = L̄ − �L/2, L2 = L̄ + �L/2, (27)

in which �L = L2 − L1 and L̄ = (L1 + L2)/2. Using Eq. (26),
to the leading order in �L/L̄ we find

ξSG(Li, T )

Li
∼ ξSG(L̄, T )

L̄

− (−1)i �L

2L̄

[
ωAξ L̄−ω − Bξ

ν
L̄1/ν (T − Tc)

]
,

(28)

where the index i can take values i = 1, 2. One can now use
Eq. (28) to determine the temperature T ∗(L1, L2) at which
the curves of ξSG/L cross; in other words, ξSG(L1, T ∗)/L1 =
ξSG(L2, T ∗)/L2 and

T ∗(L1, L2) ∼ Tc + �ξ L̄−ω−1/ν = Tc + �ξ L̄−φ. (29)

Here Tc is the true critical temperature in the limit L → ∞ and
�ξ is a constant. In Fig. 6(a), we show the Tc estimate for the
case W = 0.50. The best-fit curve is obtained by minimizing
the sum of the square of the residuals,

χ2 =
N∑

i=1

(T ∗
i − Tc − �ξ L̄−φ

i )2, (30)

where i runs over all pairs of linear system sizes. Now we vary
Tc, minimizing χ2 along the way with respect to the remaining
parameters. Since �ξ appears linearly in the model, it can be
eliminated [90] to reduce the optimization task to one free
parameter, i.e., φ:(

∂χ2

∂�ξ

)
Tc

= 0 ⇒ �̃ξ (Tc, φ) =
∑N

i=1(T ∗
i − Tc)L̄−φ

i∑N
i=1 L̄−2φ

i

. (31)

Because there are five data points with three parameters in
the original model, we have two degrees of freedom. There-
fore, the probability density function (PDF) is proportional to
e−χ2/2. To determine the confidence intervals, we calculate the
cumulative distribution function (CDF) [91]:

Q(Tc) =
∫ Tc

e− 1
2 χ2(T ′

c )dT ′
c . (32)

As an example, in Fig. 6(b) we have shown the 68% con-
fidence interval as well as the best estimate for the critical
temperature.

(ii) Estimation of ω: From Eq. (26) we observe that

ξSG(Tc)/L ∼ Cξ + Aξ L−ω. (33)

Thus, using the best estimate of Tc from the previous step,
we expect the data points of ξSG(Tc)/L as a function of L−ω

to follow a straight line when ω is chosen correctly. We can
therefore vary ω and measure the curvature until it vanishes
at the optimal value. We have demonstrated this in Figs. 6(c)
and 6(d). Note that the error bar for ω is calculated using the
bootstrap method.
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to determine the critical temperature Tc. The crossing temperatures decay toward the thermodynamic limit Tc. (b) The cumulative distribution
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deviations are evident for the smallest system size. (f) The spin-glass susceptibility χSG at T = Tc which scales as L2−η is used to determine
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(iii) Estimation of ν and η: It is straightforward to show
from Eqs. (25) and (26) that to the leading order in corrections,

χSG(Tc) = CχL2−η(1 + AχL−ω ), (34)

d

dT
(ξSG/L)(Tc) = Bξ L1/ν (1 + Dξ L−ω ), (35)

in which the best estimates obtained for Tc and ω are used. We
see that the above quantities simply scale as χSG(Tc) ∼ L2−η

and d
dT (ξSG/L)(Tc) ∼ L1/ν for large enough L. Therefore, a

linear fit in logarithmic scale will yield the exponents ν and
ω. This is shown in Figs. 6(e) and 6(f), respectively.

The above procedure has been repeated for all other values
of the disorder W . The results are summarized in Table IV
of Appendix B. We observe that within the error bars, the

TABLE IV. Critical parameters of the plasma-CG phase transi-
tion for various values of the disorder W . The exponent ν and ω are
independent of W within error bars highlighting their universality
whereas the exponent η varies as the disorder strength increases.

W Tc ν ω η

0.300 0.00446(25) 0.62(5) 1.26(7) 0.56(1)
0.500 0.00534(29) 0.74(5) 1.24(28) 0.82(5)
0.800 0.00590(56) 0.64(2) 1.28(20) 0.97(5)
1.200 0.00600(16) 0.65(3) 1.33(21) 1.09(1)

critical exponents ν and ω are robust to disorder which under-
lines the universality of these exponents. Nevertheless, larger
system sizes—currently not accessible via simulation—would
be needed to conclusively determine the universality class of
the model. The fact that we observe stronger corrections to
scaling for smaller disorder shows that the energy landscape is
rougher due to competing interactions where finite-size effects
are accentuated. For larger values of W , on the other hand, the
system becomes easier to thermalize as the disorder dominates
the electrostatic interactions.

V. CONCLUSION

We have shown that, using the four-replica expressions
for the commonly used observables, the CG model displays
a transition into a glassy phase for the studied system sizes,
provided that large enough disorder and sufficiently low
temperatures are used in the simulations (see Fig. 1 for the
complete phase diagram of the model). Previous numerical
studies—including a work [48] by a subset of us—have
failed to observe the glassy phase. In this study, we are
able to present strong numerical evidence for the validity
of the mean-field results in three space dimensions, which
predicts transition to a glassy phase at large disorder via
replica symmetry breaking. Moreover, we corroborate the
results of previous studies for the low-disorder regime where
a CO phase, similar to the ferromagnetic phase in the RFIM,
is observed. Interestingly, for large disorder values, the CG

104418-7



AMIN BARZEGAR et al. PHYSICAL REVIEW B 100, 104418 (2019)

and the RFIM are different, as the RFIM does not exhibit a
transition into a glassy phase (see, for example, Ref. [79] and
references therein). A possible reason is the combination of
the constrained dynamics (magnetization-conserving dynam-
ics) and the long-range Coulomb interactions not present in
the RFIM. These two factors can increase frustration such
that a glassy phase can emerge. Our findings open the pos-
sibility of describing electron glasses through an effective CG
model both theoretically and numerically. Because most of the
electron glass experiments are performed in two-dimensional
materials, it would be desirable to investigate these results in
two-dimensional models. Our preliminary results in two space
dimensions show no sign of a glass phase.
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APPENDIX A: EQUILIBRATION

In this Appendix, we outline the steps taken to guarantee
thermalization. The data for this work are predominantly
generated using population annealing Monte Carlo (PAMC).
In order to ensure that the states sampled by a Monte Carlo
simulation are in fact in thermodynamic equilibrium, i.e.,
weighted according to the Boltzmann distribution, one needs
to strive against bias by controlling the systematic errors
intrinsic to the algorithm due to the finite population size.

Fortunately, PAMC offers a convenient way to study and
tune the systematic errors to a desired accuracy. It can be
shown [55] that the systematic errors in a PAMC simulation
are directly proportional to the equilibration population sizeρf

which has the following definition:

ρf = lim
R→∞

R var(βF ). (A1)

Here, R is the population size and F is the free energy. ρf

is an extensive quantity defined at the thermodynamic limit
although in reality it converges at a large but finite R. Because
ρf is computationally expensive to measure as it requires
multiple independent runs, one may alternatively study the
entropic family size ρs defined as

ρs = lim
R→∞

R e−Sf , (A2)
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FIG. 7. Equilibration of a PAMC simulation. (a) Equilibration
population size ρf versus entropic family size ρs for a CG simulations
at W = 0.5. 100 instances for each system size have been studied.
Evidently, ρs is greatly correlated to ρf which controls the systematic
errors in thermodynamic quantities. Because ρf is computationally
expensive to measure, one may instead use ρs as the measure of
thermalization. (b)–(f) ρs versus the population size R for system size
L = 8 at various number of temperatures NT and Metropolis sweeps
M. When ρs converges, the system is guaranteed to be in thermal
equilibrium. As seen from the plots, convergence is achieved faster
as the number of temperatures and sweeps is increased. However,
for extremely large values of NT and M, marginal improvement
in equilibration is gained at the cost of extended run time of the
simulation.

where Sf is the family entropy of PAMC. As shown in
Fig. 7(a), ρs is well correlated with ρf which is why we can
reliably use ρs as the measure of equilibration. ρs similarly
to ρf converges at a finite R. The population size at which
the convergence is achieved is a function of the number of
temperatures NT as well as the number of Metropolis sweeps
M. Optimization of PAMC is studied in great detail in the
context of spin glasses [56,57] much of which can be carried
over to the CG simulations. As an example we show in
Figs. 7(b)–7(f) how we choose the optimal values of the
PAMC parameters. We observe that the convergence of ρs is
attained faster as the number of temperatures and sweeps is
increased.

However, beyond a certain point, any further increase
solely prolongs the simulation time while contributing
negligibly to lowering the convergent value of ρs. A good
rule of thumb for checking thermalization, as seen in Fig. 7, is
that ρs and as a result ρf converges when ρs/R = exp(−Sf ) <

0.01. We ensure that the above criterion is met for every
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FIG. 8. Importance of proper thermalization in observing a CG
phase transition. Panel (a) shows a simulation where some instances
have not reached thermal equilibrium whereas panel (b) illustrates
the same simulation in which all of the instances have been thor-
oughly thermalized.

instance that we have studied. This matter has been inves-
tigated thoroughly in Ref. [55]. It is worth mentioning here
that proper equilibration is crucial in observing phase tran-
sitions, especially in subtle cases like the CG model. We
have illustrated this matter in Fig. 8. Figure 8(a) shows a
simulation where the system has been poorly thermalized in
which ρs/R ∼ 0.1 on average across the studied instances.
By contrast in Fig. 8(b) the same simulation is done with
careful equilibration; that is to say, the criterion ρs/R <

0.01 is strictly enforced for every instance. It is clear that
the observation of a crossing is contingent upon ensuring
that every instance has reached thermal equilibrium. This, in
turn, could explain why simulations using parallel tempering
Monte Carlo, e.g., Ref. [47], see no sign of a transition.

APPENDIX B: FINITE-SIZE SCALING RESULTS

In this Appendix we list the estimates for the critical
parameters of the plasma-CO as well as the plasma-CG
phase transitions. Because the CO phase is essentially an
antiferromagnetic phase in the spin language, multiple critical
exponents such as ν, α, β, and γ can be measured numerically.
We have estimated these quantities using FSS techniques,
specifically by a FSS collapse of the data for different system
sizes onto a low-order polynomial, as explained in the main
text. To estimate the exponent ν we have used the finite-
size correlation length per linear system size ξ/L [Eq. (12)].
Because this is a dimensionless quantity, in the vicinity of the
critical point it scales as

ξ/L = Fξ [L1/ν (T − Tc)]. (B1)

Other critical exponents such as α, γ , and β can be
estimated by performing a FSS analysis using the peak val-
ues of the specific heat cv = Cv/N , connected susceptibility
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FIG. 9. Finite-size scaling analysis for the plasma-CO phase
transition at W = 0.05. The peak values of the specific heat capacity
cv, connected and disconnected susceptibilities χ and χ̄ , as well
as the inflection point value of the staggered magnetization are
used to estimate the critical exponents α, β, γ , and γ̄ , respectively.
According to Eqs. (B2) and (B3), the above quantities scale as a
power law in the linear system size L as clearly seen from the
figure.

χ , and the disconnected susceptibility χ̄ as well as the inflec-
tion point value of the staggered magnetization ms which scale
as following:

cmax
v ∼ Lα/ν, minflect

s ∼ L−β/ν. (B2)

χmax ∼ Lγ /ν, χ̄max ∼ Lγ̄ /ν . (B3)

As we can see in Fig. 9 the above scaling behaviors are very
well satisfied. The best estimates of the critical parameters for
various values of the disorder are listed in Table III. Note that
with the exception of the universal exponent ν, other critical
exponents vary with disorder which can be due to the trade-
off between large-scale thermal and random-field fluctuations.
Because at T = 0 the system has settled in the ground state,
one cannot use thermal sampling to measure the variance of
energy and staggered magnetization which are proportional to
the heat capacity and susceptibility, respectively. Instead, we
have used the techniques developed by Hartmann and Young
in Ref. [72].

For the plasma-CG transition we have calculated the crit-
ical exponents ν and η, as well as the correction to scaling
exponent ω, using the procedure explained in Sec. IV B.
Table IV lists the estimates of the critical parameters. Within
the error bars, the exponents ν and ω are independent of
disorder, whereas η changes as the disorder strength increases.
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Behavior of Electrons near Metal-Insulator Transitions, Phys.
Rev. Lett. 90, 016402 (2003).

[11] M. Müller and L. B. Ioffe, Glass Transition and the Coulomb
Gap in Electron Glasses, Phys. Rev. Lett. 93, 256403
(2004).

[12] S. Pankov and V. Dobrosavljević, Nonlinear Screening Theory
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