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Random fields disorder Ising ferromagnets by aligning single spins in the direction of the random field
in three space dimensions, or by flipping large ferromagnetic domains at dimensions two and below. While
the former requires random fields of typical magnitude similar to the interaction strength, the latter Imry-Ma
mechanism only requires infinitesimal random fields. Recently, it has been shown that for dilute anisotropic
dipolar systems a third mechanism exists, where the ferromagnetic phase is disordered by finite-size glassy
domains at a random field of finite magnitude that is considerably smaller than the typical interaction strength.
Using large-scale Monte Carlo simulations and zero-temperature numerical approaches, we show that this
mechanism applies to disordered ferromagnets with competing short-range ferromagnetic and antiferromagnetic
interactions, suggesting its generality in ferromagnetic systems with competing interactions and an underlying
spin-glass phase. A finite-size-scaling analysis of the magnetization distribution suggests that the transition might
be first order.
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I. INTRODUCTION

Spin glasses, where frustration and disorder are introduced
through random competing ferromagnetic and antiferromag-
netic interactions [1], and random-field ferromagnets, where
disorder is introduced through an effective longitudinal field
[2], are two archetypal models for the study of disordered
magnetic systems [3,4]. While usually studied independently
from each other, random interactions and random fields are
generic in many nonmagnetic systems [5], and dominate
thermodynamic and dynamic properties in, e.g., orientational
glasses [6] and relaxor ferroelectrics [7,8]. In magnetic
systems, random interactions are abundant, yet the presence
of an effective longitudinal random field is nontrivial. Applied
magnetic fields cannot be locally randomized and nonmagnetic
disorder cannot produce an effective random magnetic field,
because it violates time-reversal symmetry.

Anisotropic dipolar magnets, and specifically the
LiHoxY1−xF4 compound, are an intriguing exception. The
interplay of an applied field in the direction transverse to
the easy axis of the magnetic holmium ions and the off-
diagonal elements of the dipolar interaction gives rise to an
effective longitudinal field [9–11]. This field is locally random,
transforming spatial disorder coming from the dilution of the
Ho ions by the nonmagnetic yttrium ions into a disorder in
the effective longitudinal field. Furthermore, as a function of
holmium concentration, LiHoxY1−xF4 has both a ferromag-
netic phase at x � 0.3 and a spin-glass phase at 0 < x � 0.3
including the extreme dilute limit [12–14]. The LiHoxY1−xF4

system is therefore ideal for the study of the interplay of
competing interactions and effective longitudinal random
fields, and the effect of this interplay on the thermodynamic
and dynamical properties of the system.

Recently, we have shown [13] that disordered anisotropic
dipolar magnets in their ferromagnetic phase are driven

into a quasi-spin-glass phase upon the introduction of a
finite effective random magnetic field which is considerably
smaller than the typical nearest-neighbor interaction. This
occurs also in three space dimensions, where it displays
a novel disordering mechanism, intermediate between the
standard disordering of a ferromagnet and the Imry-Ma [2]
mechanism at dimensions two and below. The disordering
field is neither infinitesimal, nor of the order of the interaction.
The smallness of the random field at the transition is dictated
by the proximity of the system to the zero-field transition
between the ferromagnet and the spin-glass phase. Moreover,
the disordered phase near the transition consists of neither
single spins pointing in the direction of the random field,
nor of large ferromagnetic domains, but of finite-size glassy
domains, reminiscent of the competing spin-glass phase. We
denote this phase “quasi-spin-glass” (QSG) in the regime of
low temperatures, where it is frozen, and “paramagnetic QSG”
(pQSG) in the high temperature regime. The size of the glassy
domains is a function of the magnitude of the disordering field
and temperature [9,13,15].

Here we consider a more general model of an Ising magnet
where the interactions are short ranged, taken from a Gaussian
distribution with a mean ferromagnetic value J0 and a standard
deviation J , and with longitudinal random fields taken from
a Gaussian distribution of mean zero and standard deviation
Hr . Using jaded extremal optimization [16] and large-scale
parallel tempering Monte Carlo simulations [17] we analyze
the thermodynamic properties of the system at zero and
finite temperature. For zero random field we establish the
phase diagram of the system, consisting of low-temperature
ferromagnetic (FM) and spin-glass (SG) phases and a high-
temperature paramagnetic (PM) phase. The zero-temperature
transition between the FM and SG phases occurs at a ratio
of J/J0 ≈ 1.65. We then analyze the disordering of the
FM phase at J/J0 < 1.65 with increasing temperature and
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random field. For zero temperature we find that the disordering
of the FM phase occurs at finite random field, which is
much smaller than the typical interaction, 0 < Hr � J0, the
value of Hr depending on the proximity of the system at
zero field to the SG phase. At finite temperature we find
that the critical temperature of the FM-to-pQSG transition
increases linearly as a function of decreasing random field,
down to a rather small value of Hr . Our results here are in
agreement with our previous results for the dipolar-interacting
LiHoxY1−xF4 system [13], as well as with experimental data
for this material [18]. This suggests that the disordering
mechanism by finite-size glassy domains is a generic feature
of disordered ferromagnets with competing interactions in the
presence of random fields. By analyzing the distribution of
magnetization values near the random-field-driven transition,
we find evidence for a first-order transition between the FM and
pQSG phases in the regime where the FM phase is in proximity
to the SG phase. No evidence for a first-order transition is found
in the regime where the interactions are strongly ferromagnetic
dominated, i.e., J/J0 � 1.

The paper is structured as follows. In Sec. II we introduce
the model. In Sec. III we introduce the methods used for
zero-temperature and for finite-temperature calculations. Our
results are presented in Sec. IV, and discussion and conclusions
are given in Sec. V. An Appendix lists all parameters of the
different simulations.

II. MODEL

The model we simulate is given by the Hamiltonian

H = −
∑
〈i,j〉

JijSiSj −
∑

i

hiSi, (1)

where the sum is over nearest neighbors, the spin couplings
Jij are chosen from a Gaussian distribution with standard
deviation J and mean J0, and the Si are Ising spins on the
vertices of a hypercube of dimension d = 3 and linear size L.
Throughout this work we fix the mean of the distribution J0 =
1 and use the standard deviation of the Gaussian distribution
J as a means of tuning the interaction disorder in the model.
The second term describes the coupling of the Ising spins to
a site-dependent random field hi . The random fields are taken
from a Gaussian distribution with zero mean and standard
deviation Hr .

Different parameters of the model lead to different phase
diagrams. If J is small compared to |J0| and Hr = 0, as
the temperature is reduced, the system undergoes a phase
transition from a PM phase to a FM phase for J0 > 0. For
J0 < 0 the system undergoes a phase transition from a PM
phase to an antiferromagnetic (AFM) phase. By increasing the
value of the parameter J it is possible to introduce disorder
and frustration into the system. These two ingredients are
known to be essential for the emergence of a SG phase.
The ratio J0/J quantifies the amount of interaction disorder
in the system. Below a critical ratio J0/Jc, the system has
a PM phase at high temperatures and a SG phase at low
temperatures (keeping Hr = 0). Extreme cases occur when
J = 0, J0 �= 0 (J0/J → ∞) where the model reduces to the
well-known Ising model if Hr = 0, and to the random-field
Ising model [2] if Hr > 0; and when J �= 0, J0 = 0 (J0/J = 0)
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FIG. 1. Dimensionless temperature T/J vs mean of the disorder
distribution J0/J phase diagram for the model given in Eq. (1)
with fixed J0 = 1 and Hr = 0. At J � 1.65 (J0/J � 0.606) and
low temperatures the system is in a FM phase. For J � 1.65
(J0/J � 0.606) and low temperatures the system is in a SG phase. At
high temperatures the system is in the PM phase independently of the
value of J0/J . Note that the model reduces to the three-dimensional
Ising model for J = 0 and to the EA spin glass for J0 = 0.

where the model reduces to the Edwards-Anderson (EA)
spin-glass model [1]. In Fig. 1 we plot the phase diagram
of the system as a function of temperature and interaction
disorder J (keeping Hr = 0) presenting a phase transition at
zero temperature between a FM phase at small disorder and
a SG phase at large disorder, as well as a PM phase at high
temperatures.

The random-field term in Eq. (1) introduces a third axis
to Fig. 1. For both limits of zero J and finite J0 (pure
ferromagnet) and zero J0 and finite J (pure EA spin glass)
the effect of finite random field has been thoroughly studied
[4,19–29]. For the latter limit two different pictures to describe
finite-dimensional spin glasses have been proposed: the replica
symmetry breaking (RSB) picture based on the solution of the
Sherrington-Kirkpatrick model [30–34], which predicts the
existence of a spin-glass phase at finite fields, and the droplet
picture [27,28,35,36], which contrary to the RSB predicts
the instability of the spin-glass phase for any infinitesimal
small field. Which of these pictures correctly describes the
three-dimensional spin glass is still an open question [29,37–
43]. In this paper, our theoretical considerations are based on
the droplet picture, but we do not undermine the possibility
to derive an analogous prediction within the RSB picture.
Specifically, within the droplet picture of spin glasses, it is
argued [27] that the spin-glass phase is unstable to infinitesimal
random fields, as finite-size glassy domains are created,
destroying long-range glass order. Here we study the effect
of the random field in the range, where the system is a
ferromagnet, albeit with competing interactions (0 < J/J0 <

1.65). At T = 0 we obtain the phase diagram as a function of J

and Hr . At finite temperature we obtain the phase diagram for
different values of J in the ferromagnetic regime, in proximity
to the spin-glass phase and deep inside the ferromagnetic
regime. We find the dependence of the critical temperature
Tc on random-field strength and study the nature of the phase
transition.
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III. METHODS

A. Zero-temperature simulations

For the zero-temperature simulations we use the jaded
extremal optimization heuristic [16,44]. We set the algorithm
parameter τ = 1.6, 1.8, 1.9 with an aging parameter � =
0.0001 for at least 224 simulation steps. Each disorder real-
ization undergoes at least 512 independent runs. We monitor
how many times the lowest energy configuration is found.
When the success rate is more than ∼5%, we assume to have
found the ground-state configuration. Ground states are found
with high confidence for L � 10 for Hr = 0 and L � 8 for
Hr �= 0.

The FM to SG (PM) phase boundary is identified through
the Binder ratio [45]

g = 1

2

(
3 − [m4]av

[m2]2
av

)
, (2)

where m = 1/N
∑

i Si is the magnetization of the system,
N = L3 is the number of spins, and [· · · ]av represents a
disorder average. The Binder ratio g is a dimensionless
observable that scales as g ∼ G̃[L1/ν(J − Jc)]. The argument
vanishes if J = Jc for all linear system sizes L. Therefore,
the crossing of the curves for different system sizes gives an
estimate of the transition value Jc up to finite-size effects.
Simulation parameters are shown in Table IV.

The critical disorder Jc and the standard deviation for each
random field Hr are estimated using a Levenberg-Marquardt
minimization combined with a bootstrap analysis, where we
assume that the universal function g is well approximated by a
third-order polynomial. We show in Fig. 2 how the estimated Jc

agrees with the crossing of the Binder ratio curves when H =
0.00. The dashed lines are fit functions to the data used only
for visualization purposes and the vertical line is the average
of the intersections of all samples, in this case Jc = 1.63(1).
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FIG. 2. Binder ratio g as given by Eq. (2) for linear system sizes
L = 4, 6, 8, and 10 at a random field strength Hr = 0 and T = 0.
The crossing of the curves for different sizes L gives an estimate of
the critical disorder Jc denoting the transition between the FM phase
at J < Jc and the SG phase at J > Jc. The dashed lines are guides
to the eye.

B. Finite-temperature simulations

The simulations at finite temperature are done using a
combination of single-spin-flip Monte Carlo with parallel tem-
pering Monte Carlo [17]. To determine the finite-temperature
transitions for a fixed random field strength Hr and disorder
J we measure the ferromagnetic and spin-glass two-point
correlation length [46]

ξ
sg,fm
L = 1

2 sin (kmin/2)

√
χsg,fm(0)

χsg,fm(kmin)
− 1, (3)

where kmin = (2π/L,0,0), χsg(k) is the spin-glass wave-
dependent susceptibility

χsg(k) = 1

N

⎡
⎣〈∑

i,j

qiqj e
ikrij

〉⎤
⎦

av

, (4)

qi = Sα
i S

β

i is the two-replica spin overlap, and χfm(k) is the
ferromagnetic wave-dependent susceptibility

χfm(k) = 1

N

⎡
⎣〈∑

i,j

SiSj e
ikrij

〉⎤
⎦

av

. (5)

Here 〈· · · 〉 denotes a thermal average and [· · · ]av a disordered
average.

Near the transition the dimensionless ratio of the two-point
correlation functions ξ

sg,fm
L and the linear system size L scales

as ξ
sg,fm
L /L ∼ X̃[L1/ν(T − Tc)]. At the critical temperature the

argument vanishes and the dimensionless quantity becomes
size independent (up to scaling corrections), hence we expect
lines of different system sizes to cross at Tc. If, however, the
lines do not cross, no transition takes place at the studied
temperature range. Some example cases are shown in Fig. 3.
In Fig. 3(a) the FM two-point correlation length for J = 1.60
(J0/J = 0.625) and Hr = 0.00 is depicted. Clearly the curves
cross at a putative point which indicates a transition at a
temperature Tc. In Fig. 3(b) we plot the same quantity, but for
a higher disorder value J = 1.80 (J0/J = 0.55̄). In this case,
clearly the curves do not intersect at any studied temperature,
showing a lack of a ferromagnetic phase transition in this
temperature range. Moreover, it suggests a possible lack of
ferromagnetic transition at any T > 0. In Fig. 3(c) we show the
spin-glass two-point correlation length for the same disorder
value J = 1.80 as in Fig. 3(b). The curves do cross in the
simulated temperature range, signaling a PM to SG phase
transition.

For small random field strengths and interactions distribu-
tion widths the equilibration time is relatively short, making
it possible to simulate large system sizes. With increasing
random fields and interaction distribution widths equilibration
times become longer. To determine the critical temperature we
approximate the scaling function by a third-order polynomial
and perform a fit with six free parameters. To estimate the error
bars we use a bootstrap analysis as described by Katzgraber
et al. [47]. Simulation parameters for the finite-temperature
simulations are shown in Tables I, II, and III.
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FIG. 3. Ferromagnetic and spin-glass two-point correlation func-
tions divided by the linear system size L for J = 1.60 (a) and
1.80 (b) and (c), respectively. (a) The crossing of the curves of
the dimensionless quantity ξ fm

L /L for linear system sizes L = 6–20
indicates that a PM to FM transition occurs at Tc ∼ 3.09(4). (b)
The dimensionless quantity ξ fm

L /L does not cross in the studied
temperature range, showing the lack of a FM transition. (c) Curves
corresponding to different system sizes of the dimensionless quantity
ξ

sg
L /L cross at Tc ∼ 1.90(14) indicating that a PM to SG transition

occurs in this temperature range.

IV. RESULTS

The phase diagram of the model presented in Sec. II is
shown in Fig. 1. It has a high temperature PM phase and low
temperature FM and SG phases at small and strong disorder J ,
respectively. The boundary between the FM and the SG phase
is at J ≈ 1.65 (J0/J ≈ 0.606) with a weak reentrance at T =
0 [Jc = 1.63(1)]. The obtained phase diagram qualitatively
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FIG. 4. J -Hr phase diagram at T = 0. At Hr = 0 there is a FM-
SG transition at Jc(0) = 1.63. At finite but small Hr the disordered
paramagnetic phase has finite size glassy domains, denoted here as a
“quasi-SG” (QSG) phase. The crossover between the QSG phase and
the PM phase with short range spin-spin correlations is speculative.
In the inset, the solid black line is a fit Hr (J −1) = α (J −1 − J −1

c )β

to the data at low random field strength. Here Jc and β are fixed
parameters; we use the above estimated value Jc(0) = 1.63, and the
analytical result of Ref. [13] β = 0.466. α = 1.52(17) is a free fitting
parameter.

agrees with previous results [48–50] for the model in Eq. (1),
and for the closely related diluted bimodal Ising SG model
[51]. In comparison to the real space rescaling method by
Southern and Young [50], we find larger values for Tc and
for Jc, in accordance with the typical behavior of real-space
rescaling method [50]. Note the linear dependence of the PM
to SG transition on the mean interaction value. The same is
true for the PM to FM phase transition in the regime J � 1.2
(J0/J � 0.833̄).

We now study the phase diagram with the inclusion of
finite random fields and consider first the case where T = 0,
see Fig. 4. The FM phase at low disorder J and low random-
field strength Hr is disordered at large J into a QSG phase,
consisting of finite size glassy domains, but no long range glass
order except at Hr = 0. The data point at Hr = 0 corresponds
to the FM to SG transition point at T = 0 plotted also in the
T/J vs J0/J phase diagram shown in Fig. 1. At small J and
large Hr the FM phase disorders into a PM phase. The data
point at J = 0 corresponds to the critical random field value
Hr ≈ 2.16 of the random-field Ising model. For low disorder
J we expect the critical random field to be of the order of
the mean interaction J0, because in the PM phase single spins
order along their local effective field.

The situation for J � Jc is, however, different. At Hr = 0
the FM ground state and the lowest-energy SG state differ in
energy, the difference being linear in J − Jc [13]. At finite Hr ,
the low-energy SG state changes profoundly: long-range order
is destroyed, finite-size glassy domains appear, and the energy
of the resulting QSG state is reduced accordingly [9,13]. This
leads to a reduction of the energy of the QSG state below
that of the ferromagnetic state, and thus to a zero-temperature
phase transition at finite Hr , which is much smaller than J0.
The predicted functional form for the boundary between the
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the relation expected from mean-field theory T (Hr ) − Tc ∼ H 2

r holds, except for a weak reentrance at the lowest temperatures. The data are
consistent with the disordered phase being a standard PM. For the highly disordered systems with J = 1.50 (b) and J = 1.60 (c) where the FM
phase is close to the SG phase at Hr = 0 (see Fig. 4) we find a linear relation T (Hr ) − Tc(h∗) ∝ Hr for Hr > h∗ consistent with the disordered
phase being a pQSG. Furthermore, we find strong reentrance at low temperatures with critical Hr � J0, in agreement with the disordered phase
being a QSG. The inset in (c) shows ξ fm

L for L = 8, 10, and 12 for Hr = 0.40 where the curves do not cross, indicating the lack of a phase
transition to the FM phase for the studied temperature range. The dashed lines in all panels between the pQSG and PM phases and between the
QSG and pQSG phases denote smooth crossovers, their functional form should be considered as a guide to the eye.

FM and the PM phases at T = 0 is given by [13]

Hr (J−1) ∝ (
J−1 − J−1

c

) (3/2−θ )
(3−θ ) . (6)

Here θ ≈ 0.19 is the stiffness exponent [52]. Indeed, our
numerical results are in agreement with this functional
form, as can be seen by fitting the data for Hr < 1,
fixing the power to its theoretically obtained value [13]
β = (3/2 − θ )/(3 − θ ) = 0.466, and using the above
estimated critical disorder Jc ≈ 1.63 for the fit. This leaves
the proportionality prefactor α as the single free fitting
parameter. The inset of Fig. 4 shows the fitting result. We
note that our data are limited to Hr � 0.5. It was not possible
to determine the crossing point of the Binder ratio curves
for different system sizes for random fields with Hr > 0.5
because of the proximity of the crossing point to g = 1.

At finite temperature and for J � Jc, similar considerations
to the ones mentioned above manifest themselves in the
dependence of Tc on the random field. The underlying
glassy state at finite temperature consists of paramagnetic SG
domains of typical size ξ . We denote this phase as pQSG. For
moderate Hr , which does not affect the typical domain size, the
reduction of the energy per spin of the pQSG state is ∝Hr/ξ

3/2.
As a result, only for Hr > h∗ ∝ (Jc − J )ξ 3/2 the disordering
of the FM phase is by the pQSG phase. In this regime theory
predicts a linear dependence of Tc on Hr [13]. At Hr < h∗ the
disordering is to the standard PM phase, with the known weak
dependence of Tc on Hr . All the above considerations do not
apply to J � Jc, where the FM is far from the SG phase, and
the disordering to the PM phase is standard for all strengths of
random field.

In Fig. 5 we present the T vs Hr phase diagrams for
disorders J = 0.50, J = 1.50, and J = 1.60. In Fig. 5(a)
J � Jc. The disordering is into the standard PM phase, with
quadratic dependence T (Hr ) − Tc(0) ∝ H 2

r for small Hr and a
small reentrance at low temperatures. For J = 1.50 [Fig. 5(b)]
the system is close to the SG phase. Indeed, for Hr < h∗ ≈ 0.1
the dependence of Tc on Hr is weak, as is expected for
disordering to the standard PM phase. For Hr > h∗ we find

the dependence of Tc on Hr to be linear, in agreement with
disordering to the pQSG phase. We note that at 0.5 < Hr < 0.6
there is a sharp decrease of Tc to zero within the finite-
temperature simulations, and we find a value of Hr = 0.39
for the zero temperature transition (inferred from the fitting
function in the inset of Fig. 4). This is in agreement with the
disordering field by the QSG phase being much smaller than
the interaction strength also at low temperatures. We note that
as the QSG phase is frozen, susceptibility measurements are
expected to depict only the crossover between the QSG and
the PM phase at large random fields. This is in agreement
with Ref. [18], where a sharp feature in the susceptibility is
observed at higher temperatures, depicting the transition to
the pQSG phase, but a smooth crossover is observed for the
lower temperatures. The observed peak value at the crossover
occurs at larger Hr with diminishing peak value as temperature
is reduced [18], in agreement with the scenario of the QSG
having smaller glassy domains as a function of increasing Hr

[9,13]. In Fig. 5(c) we present the results for J = 1.60, closer
to the zero-field FM-to-SG transition. Results are similar to
the case of J = 1.50, with a weaker linear dependence, and
with a smaller random field 0.3 < Hr < 0.4, which disorders
the FM at all temperatures.

Let us now consider the order of the FM to PM/pQSG
transition. The order of the phase transition of the RFIM is a
long standing question. Whereas analytic arguments support
a second-order transition controlled by a zero-temperature
fixed point [27,53,54], some numerical results support a first-
order transition [19,20] while others support a second-order
transition [21,22,55–59]. For bimodal disorder distributions a
mean-field solution suggests a first-order transition for large
enough values of the random field [60]. Recent numerical
work supports universality in the RFIM [58], suggesting
that the nature of the phase transition is independent of the
random-field distribution. Moreover, high-accuracy estimates
for the magnetic exponent ratio β/ν [59] found the value to
be very small, but clearly finite. In the present work, for small
exchange disorder (J = 0.50) we do not find any signature of a
first-order phase transition. This suggests that the recent phase
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FIG. 6. Magnetization histograms for J = 1.50 with a random field Hr = 0.04 and L = 40 (below the critical temperature) (a), Hr = 0.40
and L = 20 (below the critical temperature) (b), and Hr = 0.40 and L = 20 (above the critical temperature) (c). The solid red lines are
double-Gaussian fits, which are composed of the sum of the two modes (thin dashed black lines), the blue dashed lines are single Gaussian
fits. For Hr = 0.04, the double Gaussian fit does not differ much from the single Gaussian fit, i.e., the distribution is normally distributed as
expected for all temperatures in a continuous phase transition. For Hr = 0.40 a hump emerges for T < Tc, the single Gaussian fit (blue dashed
line) cannot capture the hump, but the double Gaussian fit (solid red line) does. Close to the critical temperature the single Gaussian fails to
fit the distribution and a bimodal double-Gaussian structure becomes evident suggesting a finite jump in the magnetization washed out by the
disorder at Tc, as expected for a first-order phase transition.

transition behavior found for the RFIM [58,59] also applies
for models with small exchange disorder.

We now consider the order of the transition in the presence
of both random fields and strong random interactions. Intrigu-
ingly, our results suggest, for strong interaction disorder, a
continuous transition for Hr < h∗ where the FM disorders
into a “standard” PM phase, and a first-order transition for
Hr > h∗ where the disordering is into the pQSG phase. In
the latter, we find a discontinuous jump in the magnetization
across the transition, but from our microcanonical simulations,
based on a recently proposed method [61–63], we did not
detect any latent heat, which is either zero or too small to
be detected in the current accessible system sizes, similar to
Refs. [20,21].

Specifically, we study the distribution of the magnetization
above and below Tc for J = 1.50 at different field strengths Hr ,
as shown in Fig. 6. A bimodal distribution close to Tc is a sign
of a first-order phase transition, whereas a normal distribution
with mean μ0 = [〈|m|〉]av would be the expected distribution
for a continuous phase transition. For small Hr = 0.04 < h∗
[Fig. 6(a)] we note that the single-Gaussian fit and the
double-Gaussian fit agree, suggesting that the magnetization
distribution is likely normal close to Tc and therefore the
phase transition is continuous. However, we find that for large
Hr = 0.40 > h∗ the double-Gaussian fit does differ consid-
erably from the single-Gaussian fit, moreover, the double
Gaussian fit reproduces better the magnetization histogram
below and above Tc. This suggests that the magnetization
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FIG. 7. Relative difference of the bootstrapped mean value of the two modes (with mean values μ1
0 and μ2

0) of the bimodal Gaussian fitted
function as a function of temperature for (a) Hr = 0.30, (b) Hr = 0.40, and (c) Hr = 0.50. The gray vertical line corresponds to the estimated
critical temperature. The relative difference between the modes increases close to Tc, the discrepancy between the estimated value for Tc and
the maximal values of the curves can be attributed to the strong finite-size correction of this observable.
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jumps at Tc, and thus the existence of a first-order phase
transition.

To strengthen the claim of a bimodally distributed mag-
netization for large random fields close to Tc, we perform a
bootstrap analysis of the double-Gaussian fit for J = 1.50
and Hr = 0.30, 0.40, and 0.50, and show the normalized
difference between the mean of the two modes as a function
of the temperature T (see Fig. 7). We observe that the
maximum values of the curves are close to Tc. The fact
that the relative difference between the modes is maximal
close to the critical temperature gives further evidence for
a first-order phase transition. These distributions show large
finite-size corrections and a clean determination of the critical
temperature is difficult.

V. DISCUSSION

Disordered nonmagnetic ferroic systems naturally show
randomness in both their interparticle interactions and in the
effective field presented as a bias between the two degenerate
single-particle states. Recently, it was shown that this interplay
of randomness of interactions and fields is present also in
the ferromagnetic phase of the LiHoxY1−xF4 compound. This
has allowed for new experiments [18,64] investigating this
interplay of randomness, as well as for new insights into
older experiments, e.g., demonstrating different final states
obtained by in-field and zero-field annealing of the disordered
ferromagnetic LiHoxY1−xF4 system [65].

The effective random field in the LiHoxY1−xF4 system is a
consequence of the interplay between the off-diagonal terms
of the dipolar interactions and the applied transverse field. The
applied field also induces transitions between the spin up |↑〉
and spin down |↓〉 states in Ho, thus giving rise to an effective
transverse field term in the Ising Hamiltonian. However, at low
field, the effective random field dominates because it is linear
in the applied transverse field [9,11], whereas the effective
transverse field is negligible at small fields [66,67].

In a previous study [13] we analyzed the LiHoxY1−xF4

system in the regime where the system is ferromagnetic,
albeit with disorder in both the interaction and the effective
longitudinal field. We have suggested a novel disordering
mechanism where at a finite random field that is much smaller
than the typical interaction, finite-size glassy domains disorder
the FM phase into a PM phase. This mechanism explains
various experimental features, such as the linear dependence
of the critical temperature with increased random field, and
the diminishing and rounding of the susceptibility peak with
decreasing temperature [18].

The scaling theory within which the novel disordering
mechanism was obtained [13] is not particular to dipolar
systems. In the present work we have shown that the same
mechanism applies to a generic short-range random-field Ising
model with competing interactions having a ferromagnetic
mean. Our results thus support the generality of the disordering
mechanism to random-field ferroic systems with competing
interactions, and it would be of interest to check their
applicability, e.g., to relaxor ferroelectrics [7,8,68,69].

We find an excellent agreement, quantitative and qualita-
tive, between our numerical results and the predictions of the
scaling theory based on the picture of the disordering of a FM

with competing interactions by a QSG (pQSG) phase at low
(high) temperature. It would be of much interest to further
corroborate our results here with a direct microscopic analysis
of the domain structure in the disordered phase.

We further analyze here the nature of the FM to PM tran-
sition and show evidence suggesting that once the disordering
is induced via the above-mentioned mechanism, where the
FM phase is disordered by finite size glassy domains (i.e.,
to the pQSG phase), then the transition is first order. This
differs from the RFIM with no competing interaction. In the
latter, it is believed that the thermodynamic phase transition is
second order [2], albeit experimentally hard to be observed
because of slow relaxation. It would be of much interest
to further study this transition between the FM and pQSG
phases, and the dynamics of the system near the transition,
as hysteresis and slow relaxation are expected. With regard to
the latter, nonequilibrium dynamics of the Ising model were
recently studied in the presence of random bonds [70] or in
the presence of random fields [71]. For both systems it was
shown that the equilibrium disorder-driven transition shows
up when measuring the nonequilibrium aging properties. It
would be of interest to study whether the quasi-SG driven
transition discussed here has distinct characteristics in the
nonequilibrium aging properties of the system.
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APPENDIX

The simulation parameters for Fig. 5 are shown in Tables I,
II, and III for J̃ = 0.50, J̃ = 1.50, and J̃ = 1.60, respectively.
The simulation parameters of the zero-temperature simulations
are shown in Table IV.

214414-7



ANDRESEN, KATZGRABER, AND SCHECHTER PHYSICAL REVIEW B 96, 214414 (2017)

TABLE I. Parameters of the simulations for J̃ = J/J0 = 0.5
where J0 = 1. Nsa is the number of samples, Nsw is the total number
of Monte Carlo sweeps used for equilibration, Tmin is the lowest
temperature simulated, Tmax is the highest temperature simulated,
and NT is the number of temperatures used in the parallel tempering
method for each system size L.

J̃ Hr L Nsa Nsw Tmin Tmax NT

0.50 0.00 16,20,24 512 1024 4.200 5.000 100
0.50 0.00 28,32 512 2048 4.200 5.000 100
0.50 0.00 40 512 4096 4.200 5.000 100
0.50 0.00 48 512 8192 4.200 5.000 40
0.50 0.20 16,20,24 512 2048 4.100 5.000 30
0.50 0.20 28,32,36,40 512 2048 4.100 5.000 50
0.50 0.30 16,20,24 1024 2048 4.100 5.000 30
0.50 0.30 28,32 512 2048 4.100 5.000 50
0.50 0.30 40 512 4096 4.100 5.000 50
0.50 0.50 16 1024 4096 4.100 5.000 30
0.50 0.50 20 1024 8192 4.100 5.000 30
0.50 0.50 24 1024 16384 4.100 5.000 30
0.50 0.50 28,32,40 1024 16384 4.100 5.000 50
0.50 0.70 16 1024 2048 3.950 4.850 30
0.50 0.70 20 1024 8196 3.950 4.850 30
0.50 0.70 24 1024 16384 3.950 4.850 30
0.50 0.70 28,32,40 1024 16384 3.950 4.850 50
0.50 0.90 12 1024 1024 3.700 4.800 30
0.50 0.90 16 1024 4096 3.700 4.800 30
0.50 0.90 20 1024 8192 3.700 4.800 30
0.50 0.90 24 1024 16384 3.700 4.800 30
0.50 0.90 28,32 1024 65536 3.700 4.800 40
0.50 1.30 12 1024 512 2.200 5.000 40
0.50 1.30 16 1900 32768 2.200 5.000 50
0.50 1.30 20 1424 262144 2.200 5.000 50
0.50 1.30 24 1424 1048576 2.200 5.000 50
0.50 1.60 8 2300 8192 1.500 5.000 50
0.50 1.60 10 2300 65536 1.500 5.000 50
0.50 1.60 12 2073 4194304 1.500 5.000 50
0.50 1.60 14 2116 4194304 1.500 5.000 50
0.50 1.80 6 1274 32768 1.400 5.000 50
0.50 1.80 8 2230 65536 1.400 5.000 50
0.50 1.80 10 2392 2097152 1.400 5.000 50
0.50 1.80 12 2752 16777216 1.400 5.000 50
0.50 2.00 4,6 3000 16384 0.600 4.500 50
0.50 2.00 8 4500 1048576 0.600 4.500 50
0.50 2.00 10 1200 33554432 0.600 4.500 50

TABLE II. Parameters of the simulations for J̃ = J/J0 = 1.50,
where J0 = 1. Nsa is the number of samples, Nsw is the total number
of Monte Carlo sweeps used for equilibration, Tmin is the lowest
temperature simulated, Tmax is the highest temperature simulated,
and NT is the number of temperatures used in the parallel tempering
method for each system size L.

J̃ Hr L Nsa Nsw Tmin Tmax NT

1.50 0.00 16,20 1024 16384 3.30 3.80 100
1.50 0.00 24,28 1024 65536 3.30 3.80 100
1.50 0.00 32,40 1024 262144 3.30 3.80 30
1.50 0.02 16 1024 65536 3.22 3.983 18
1.50 0.02 20,24 1024 65536 3.22 3.983 30
1.50 0.02 28 1024 131072 3.22 3.983 30
1.50 0.02 32,40 1024 131072 3.22 3.983 40
1.50 0.04 16 1024 65536 3.22 3.983 18
1.50 0.04 20 1024 65536 3.22 3.983 40
1.50 0.04 24,28,32,40 1024 131072 3.22 3.983 40
1.50 0.06 16 1024 32768 3.22 3.983 18
1.50 0.06 20,24 1024 65536 3.22 3.983 40
1.50 0.06 28,32 1024 262144 3.22 3.983 40
1.50 0.06 40 1200 524288 3.22 3.983 40
1.50 0.08 16,20 1024 16384 3.25 4.00 20
1.50 0.08 24 1024 65536 3.22 4.00 18
1.50 0.08 28 1024 262144 3.22 4.00 40
1.50 0.08 32,40 1024 524288 3.22 4.00 40
1.50 0.10 16 2048 16384 3.20 4.00 16
1.50 0.10 20 2048 32768 3.20 4.00 16
1.50 0.10 24 1024 65536 3.20 4.00 16
1.50 0.10 28 1024 262144 3.20 4.00 40
1.50 0.10 32,40 1024 524288 3.20 4.00 40
1.50 0.20 12 2048 16384 3.00 4.00 16
1.50 0.20 16 1024 32768 3.00 4.00 16
1.50 0.20 20,24 1024 131072 3.00 4.00 16
1.50 0.20 28,32 1024 524288 3.00 4.00 30
1.50 0.30 12,14 2048 32768 2.78 4.00 20
1.50 0.30 16 1024 65536 2.78 4.00 20
1.50 0.30 20 2043 131072 2.78 4.00 20
1.50 0.30 24 3285 1048576 2.78 4.00 30
1.50 0.40 8,10,12 2048 32768 2.00 4.50 60
1.50 0.40 14,16 2048 65536 2.00 4.50 60
1.50 0.40 20 1024 1048576 2.00 4.50 60
1.50 0.50 4 4096 32768 1.00 5.00 50
1.50 0.50 6 3637 65536 1.00 5.00 50
1.50 0.50 8 2048 131072 1.00 5.00 50
1.50 0.50 10 2048 262144 1.00 5.00 50
1.50 0.50 12 1441 1048576 1.00 5.00 50
1.50 0.50 14 2645 2097152 1.00 5.00 50
1.50 0.60 4,6 2048 16384 1.00 5.00 50
1.50 0.60 8 1387 65536 1.00 5.00 50
1.50 0.60 10 2048 262144 1.00 5.00 50
1.50 0.60 12 5275 524288 1.00 5.00 50
1.50 0.60 14 1199 4194304 1.00 5.00 50
1.50 0.60 16 1024 33554432 1.00 5.00 50
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TABLE III. Parameters of the simulations for J̃ = J/J0 = 1.60, where J0 = 1. Nsa is the number of samples, Nsw is the total number of
Monte Carlo sweeps used for equilibration, Tmin is the lowest temperature simulated, Tmax is the highest temperature simulated, and NT is the
number of temperatures used in the parallel tempering method for each system size L.

J̃ Hr L Nsa Nsw Tmin Tmax NT

1.60 0.00 12 1024 8192 2.75 5.00 100
1.60 0.00 16 1024 32768 2.75 5.00 100
1.60 0.00 20 1024 65536 2.75 5.00 100
1.60 0.00 24 1024 262144 2.75 5.00 30
1.60 0.00 28 1024 524288 2.75 5.00 30
1.60 0.00 32 1024 1048576 2.75 5.00 30
1.60 0.10 12 1024 32768 1.75 5.00 37
1.60 0.10 16,20 1024 131072 1.75 5.00 37
1.60 0.10 24 1024 262144 2.75 5.00 30
1.60 0.10 28 1024 524288 2.75 5.00 30
1.60 0.10 32 1024 1048576 2.75 5.00 30
1.60 0.20 8 2048 8192 1.75 5.00 37
1.60 0.20 10 2840 16384 1.75 5.00 37
1.60 0.20 12 1500 65536 1.75 5.00 37
1.60 0.20 14 2048 1048576 1.75 5.00 40
1.60 0.20 16 2048 4194304 1.75 5.00 40
1.60 0.30 4 3024 8192 0.5 4.00 71
1.60 0.30 6 3024 32768 0.5 4.00 71
1.60 0.30 8 4096 131072 0.5 4.00 71
1.60 0.30 10 2440 1048576 0.5 4.00 71
1.60 0.30 12 1782 8388608 0.5 4.00 71
1.60 0.40 4 4000 8192 0.50 4.00 71
1.60 0.40 6 2048 32768 0.50 4.00 71
1.60 0.40 8 5800 131072 0.50 4.00 71
1.60 0.40 10 3500 524288 0.50 4.00 71
1.60 0.40 12 2100 4194304 0.50 4.00 71

TABLE IV. Parameters of the zero-temperature simulations with J̃ = J/J0, where J0 = 1. Hr is the random field strength, Nsa is the
number of samples, and Neo is the total number of simulation steps for each system size L.

J̃ Hr L Nsa Neo

0.00 1.40, 1.50, 1.55, 1.60, 1.70, 1.80 4 1024 10000000
0.00 1.40, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 1.80 6 1024 25000000
0.00 1.40, 1.50, 1.55, 1.60, 1.65, 1.68, 1.70, 1.75 8 1024 35000000
0.00 1.50, 1.55, 1.60, 1.70 10 1024 268435456
0.15 1.50, 1.60, 1.70 4 1024 15000000
0.15 1.50, 1.55, 1.60, 1.65, 1.70 6 1024 25000000
0.15 1.50, 1.55, 1.60, 1.65, 1.70 8 1024 35000000
0.25 1.50, 1.55, 1.60, 1.70 4 1024 25000000
0.25 1.40, 1.50, 1.55, 1.60, 1.65, 1.70 6 1024 25000000
0.25 1.40, 1.50, 1.55, 1.60, 1.65 8 1024 35000000
0.50 1.40, 1.50, 1.55, 1.60, 1.65 4 1024 25000000
0.50 1.40, 1.45, 1.50, 1.55, 1.60 6 1024 35000000
0.50 1.40, 1.45, 1.50, 1.55, 1.60 8 1024 35000000
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