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Charge avalanches and depinning in the Coulomb glass:
The role of long-range interactions
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We explore the stability of far-from-equilibrium metastable states of a three-dimensional Coulomb glass at
zero temperature by studying charge avalanches triggered by a slowly varying external electric field. Surprisingly,
we identify a sharply defined dynamical (“depinning”) phase transition from stationary to nonstationary charge
displacement at a critical value of the external electric field. Using particle-conserving dynamics, scale-free
system-spanning avalanches are observed only at the critical field. We show that the qualitative features of this
depinning transition are completely different for an equivalent short-range model, highlighting the key importance
of long-range interactions for nonequilibrium dynamics of Coulomb glasses.
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I. INTRODUCTION

The long-range nature of the Coulomb interaction plays
only a secondary role in metals, where it remains screened
by mobile electrons down to atomic length scales. The
situation is, however, far more interesting on the insulating
side of disorder-driven metal-insulator transitions [1], where
screening is suppressed due to charge localization. Here, the
unscreened Coulomb interaction leads to the opening of the
“Coulomb gap” in the electronic density of states, as first
pointed out in pioneering works of Pollack [2], as well as
Efros and Shklovskii (ES). The ES theory [3,4] predicts
a universal form of the Coulomb gap, and explains how
its existence modifies hopping transport [4] in disordered
insulators, consistent with numerous experiments [5]. Early
work also revealed that Coulomb interactions in disordered
insulators generally contribute to the formation of an extensive
number of metastable states, i.e., the formation of the Coulomb
glass (CG) [6-8]. In subsequent work, various aspects of glassy
behavior of the CG were explored theoretically [9-18] and
experimentally [19-31].

More recent progress followed with the formulation of
analytical theories of the CG [10-13,16,17], which adapted
Parisi’s replica methods [32-35] for spin glasses to disordered
Coulomb systems. These theories find a Coulomb gap of
the same universal form as predicted by the ES theory, but
this behavior emerges only within the low-temperature glassy
phase (displaying replica symmetry breaking). Within this
mean-field picture, the universality of the Coulomb gap, as
well as the saturation of the appropriate stability bound,
can be directly traced back to the “marginal stability” of
the entire glassy phase [10]. In physical terms, the marginal
stability reflects the emergence of “replicons,” soft (gapless)
collective excitations involving simultaneous rearrangements
of many electrons. If such soft excitations indeed characterize
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the Coulomb glass, they should also govern the physical
response to various weak perturbations (e.g., the external
electric fields), perhaps leading to large-scale avalanches.
Precisely such behavior has already been established [36,37]
for infinite-range spin-glass models, leading to scale-free
avalanches characterizing an entire manifold of metastable
states. Despite the successes of the mean-field approach, its
applicability to finite space dimensions remains the subject
of much controversy and debate [38-43]. Furthermore, a
computational search for a finite-temperature glass transition
in the CG in two and three space dimensions has remained
inconclusive [14,15,18]. To shed additional light on the nature
of excitations in the CG, and further test the mean-field ideas,
it is therefore useful to examine the stability of the low-lying
metastable states by external electric fields.

In this work, we investigate the out-of-equilibrium behavior
of a three-dimensional Coulomb glass at zero temperature and
study the hopping and total charge displacement avalanches
triggered by increasing an externally-applied electric field.
Previous work on avalanches in the CG in three space
dimensions done by Palassini and Goethe [44], which trigger
avalanches via dipole excitations or charge insertions, find
scale-free behavior for long-range hopping dynamics, but
when hopping is bounded by a finite fixed range they do
not find any scale-free avalanches. Because physical electrons
rearrange themselves by finite-range hopping it is of interest to
search for a scale-free behavior in the CG for bounded hopping
dynamics by other means.

Here we study the CG with particle-number-conserving
short-range hopping, by “adiabatically” increasing an external
electric field up to a depinning electric field &g, that separates
the steady current state from just finite electron rearrangements
as a reaction to the external field. We find that scale-free
avalanches arise in the Coulomb glass when the electric
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field is close to &p. To emphasize the role played by the
long-range Coulomb interactions we repeat our simulations
for an equivalent short-range interacting model. In this case
we still find a sharply defined depinning transition, but a
completely different form for the critical behavior. Here we
do not find any scale-free avalanches, in dramatic contrast to
the behavior of the CG model.

The outline of this paper is as follows. Section II describes
the model, followed by a description of the used numerical
procedure in Sec. III A. Measured quantities are introduced in
Sec. III B, followed by results presented in Sec. V.

II. MODEL

The Coulomb glass Hamiltonian (in dimensionless units)
is given by [3]

1 1
H=5) (- K)o = K+ Xijn,«p,-, e

i#] il

where n; is the electron number at site i, K is the filling factor,
r; is the coordinate of site i, and ¢; a randomly-distributed
on-site energy. For a charge neutral system, i.e., K = 1/2,
in a constant external electric field £ in x direction, Eq. (1)
can be rewritten in an Ising spin formulation by setting [6]
Si = 2n; — 1 (S; € {1} an Ising spin variable)

1
H:ZZJijSiSj+ZSi(q)i+Vi)a ()
i<j i
where the electric potential is V; = —€x; and x; is the

x position of spin i. This form of the Hamiltonian with
€ =0 is of a random-field Ising model with long-range
antiferromagnetic interactions given by

1

Jj=——.
[r; — |

3)
The site energy ®; = ¢;/2 is sampled from a Gaussian
distribution with zero mean and standard deviationo = 0.5. To
keep the dynamics of the two models identical it is necessary
to constrain the Ising-like Hamiltonian in Eq. (2) to have a
constant magnetization (m = 0 for K = 1/2) at all times. This
is accomplished by using magnetization-conserving Kawasaki
dynamics [45].

The corresponding short-range model (SR) is given by the
same Hamiltonian in Eq. (2), but with long-range interactions
replaced by nearest-neighbor interactions (on a cubic lattice)
of the form

1
Jij = {0

A. Determination of the initial configurations

ifi and j are nearest neighbors,
otherwise.

“

In our simulations, we need to generate stable initial
configurations of the system. In this context, “stable” refers to
stable towards single nearest-neighbor electron hopping. We
implement this procedure for both the CG and the SR model. In
order to have an initial configuration with a Coulomb gap and
track its dependence on the electric field, we compute pseudo-
ground-state configurations using jaded extremal optimization
(JEO) [46].
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The single-particle density of states (DOS) of a classical
Coulomb system is given by

1
p(E) = <N Z S(E — E,-)>, Q)

where the local single-particle energy is given by

1 . 1
El-:E;Jijsiﬁ-zcbil:Z<ni_§)~]ij+(pia (6)

J

and the average (- - -) is performed both over thermal fluctu-
ations and disorder instances. The ground state of the CG is
well known to display a Coulomb gap [3] in the DOS at the
Fermi energy, which gradually fills up when temperature is
increased [6,7,9,18,47].

For the CG, we can empirically check how “far” or “close”
a given configuration is from the ground state by examining
the form of the DOS. Depending on the depth of the Coulomb
gap, we can argue whether the configurations are close or far
from their respective ground state. The SR ground states do
not have a Coulomb gap [40], but have a “dip” at the Fermi
energy that converges to a finite value in the thermodynamic
limit. Again, we can empirically check if we have a good
approximation of the ground state by studying at the DOS
distribution. In Fig. 1(a), we show the DOS of the CG using
the pseudoground states for all simulated linear system sizes
L (the systems have N = L3 spins). The occupation at E = 0
is very close to zero, showing that the configurations found
using JEO are not far from the true ground state. In Fig. 1(b),
we show the DOS of the CG at electric fields 0.5 < £ < 0.6.
The data suggest that we are further away from a ground-state
configuration, however, a pronounced gap in the DOS is still
visible. The configurations for the SR model found by the
JEO algorithm are likewise not far from the ground state (not
shown).

III. NUMERICAL DETAILS
A. Algorithm
For the description of the algorithm, we introduce a stability
criterion, which for an electron (S; = 1) or a vacancy (S; =
—1) at a given site is given by

(E;+V)-S <0 — stable, 7

(E;+V;)-S; >0 — unstable. 8)

For each pseudoground state generated via JEO [see Fig. 1(a)],
we proceed as follows. (1) Select the least stable electron
with one nearest-neighbor hole in the opposite direction of
the electric field. (2) Apply an electric field £ just strong
enough to destabilize the selected electron, such that it will
hop to the neighboring hole. (3) Recompute all single-particle
energies given by Eq. (6), and select the most unstable electron
that minimizes the total energy by hopping to one of its
neighboring holes. If there are no unstable electrons or an
energy minimization is not possible, go to step 3. (4) Perform
the electron-hole hopping that minimizes the energy; go to
step [T A.
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FIG. 1. Density of states for the three-dimensional CG of (a) the
starting pseudo-ground-state configurations and (b) over a range of
different electric potentials 0.5 < £ < 0.6. Both distributions show a
clear dip for E = 0, suggesting that the states computed using JEO
are indeed close to the true ground state of the system. Data averaged
over 2500-10000 disorder instances, depending on the size size of
the system (see Table I).

The careful reader will have noticed that the above
procedure is in fact an infinite loop stuck between steps 3 and 4
when a certain electric field threshold £ > &y, is reached. This
electric field threshold is the depinning field of the system,
which separates two regions; below &gy, there are only short
charge displacement pulses due to the rearrangement of the
electrons as a response to the external electric field, and above
it there is a steady current. A sketch of the different scenarios
is shown in Fig. 2. The infinite loop between 3 and step 4 is
the steady current flowing through the system. Since we are
interested in the number of times step 3 and step 4 are repeated
at each £ field (this, in turn, yields the avalanche size n) before
we reach the depinning field, we artificially stop the process
if the avalanche size surpasses a given number 7ngeaqy = 2N,
where N is the total number of sites of the system. Note
that ngeaqy is much larger than the maximal avalanche size
measured for & < &y, for a given system size L.

To cope with the long-range Coulomb interactions between
the electrons we use the Ewald summation method [48].
Furthermore, the applied electric field is periodic to avoid
an electron pileup at the edge of the system. The simulation
parameters are listed in Table I.

FIG. 2. Sketch of the site-dependent random potential landscape
felt by the electrons (blue circles) at different electric field strengths:
@) &=0,b)0 <& < &p,and (c) &, < £. (a) Stable configuration
of electrons at £ = 0. (b) The electric field effectively tilts the
potential. At electric fields 0 < £ < &, the electrons just rearrange
as a reaction to the field. (c) The electric field £ > &, further tilts the
potential to a point where a steady current is induced.

B. Measured observables and statistical data analysis

At each increase of £ we count the number of electrons n
that hopped and the total charge displacement S in the direction
of the applied electric field. Using these data, we compute their
distributions D(n) and P(S), respectively (see, for example,
Fig. 3). To determine the depinning field £, we compute
the cumulative distribution function Py(L,£) of the depinning
distributions which gives the probability whether a randomly
picked sample is in the pinned or depinned state for a given
system size and at a given field. We perform a finite-size scaling
assuming that the function Py has a universal form [50-52]

Py~ OILYV(E/Egp — D] )

[see Fig. 5(b) and Fig. 8(b) for the CG model and the SR model,
respectively], which gives us an estimate of the depinning
field. Note that the depinning field is defined as the typical
electric field necessary to induce a continuous current for a
given system size, i.e, for £ < £gp, the system just rearranges
its electron configuration by electron hopping, whereas for
& > &yp, the field induces a steady current.

TABLE I. Parameters of the simulation: For the Coulomb glass
(CG) and the short-range model (SR), we study systems of N = L3
spins close to the ground state and compute the different distributions
over N, disorder samples for different applied electric fields £.

Model L Nga

CG 4 8000
CG 6 9000
CG 8 6500
CG 10 5000
CG 12 4000
CG 14 9000
CG 16 4000
CG 30 2500
SR 4 12000
SR 8 14 400
SR 16 10200
SR 24 9500
SR 32 7400
SR 48 2500
SR 64 700
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In addition, we define the characteristic avalanche size n*
of the system by fitting the exponential tail of the avalanche
distributions D(n) to an exponential function ~ exp(—n/n*).
For each system size L, we thus obtain a characteristic
avalanche size n*(L). To estimate the value of n} in the
thermodynamic limit, we do an extrapolation of nj_ by
using the following functional ansatz:

1/n% =1/n%, +a/L°, (10)

where w, a, and n} are fitting parameters.

Finally, we also monitor the DOS as a function of the
applied electric field £. For example, Fig. 1(b) shows the
density of states at an electric field range of 0.5 < £ < 0.6.

Different finite-size scaling Ansitze have been at-
tempted [36] to scale the D(n) and P(S) data without yielding
any satisfactory results. We therefore empirically resized the
avalanche curves without making any a priori assumptions. In-
terestingly, the following scaling ansatz showed good results:

D= % d(n/L), (11)

1
P = pS/L), 12)

where d(n/L) and p(S/L) in Egs. (11) and (12), respectively,
are universal functions.

IV. RESULTS

Figure 3 shows electron hop, as well as total charge
displacement avalanche distributions for the CG for different
ranges of the electric field £. The field £ is increased in
the different panels from top to bottom. Figures 3(a)-3(c)
show how the avalanche sizes progressively become system
spanning, i.e., when £ ~ &y, [as is the case in Fig. 3(c)]
avalanche size distributions become power laws. As the field
reaches &g, a hunch in the curves emerges separating a
power-law region from an exponential cutoff, for the measured
avalanches distribution D(n). Figure 6 shows the dependence
of the inverse of the characteristic avalanche size 1/n* as a
function of the electric field £,. We can extract from the figure
that the depinning field &y, lies somewhere around & ~ 0.6.
A precise estimate of the depinning field can be obtained by
analyzing the cumulative distribution function P, as shown
in Fig. 5(b). For the CG model we obtain £qp, = 0.609(7). In
Fig. 7, we show an example of the estimation of n* using
Eq. (10) for a given field window 0.5 < £ < 0.6. Similar
qualitative results are obtained for the charge displacement
distribution P(S), as shown in Fig. 3(d). We attempt to scale
the data for the distributions D(n) and P(S) in Fig. 4. The data
scale well with no adjustable parameters (especially for the
larger system sizes) according to Egs. (11) and (12).

In addition, we study the total charge displacement dis-
tribution and electron hop distribution as a function of the
applied field for the SR model, where the estimated depinning
field is &gp = 0.781(9) as seen in Fig. 8. Electron avalanche
distributions are shown in Fig. 9. For low fields, i.e., £ < 0.5,
the characteristic avalanche size n*(L) can be estimated
analogously as for the CG model, i.e., fitting the tail to an
exponential function and using Eq. (10) to extrapolate to the
thermodynamic limit. As for the CG model at low fields,
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FIG. 3. (a), (b), and (c) show electron-hole avalanche distribu-
tions D(n) of the CG at electric field ranges between 0.3 < £ < 0.6.
Scale-free avalanches emerge as £ approaches &g, & 0.603(5). (a)
03<&<04,1b)04 <& <0.5 and (c) 0.5 < £ < 0.6. Note that
only close to the depinning electric field &, &~ 0.603(5) scale-free
avalanches, i.e., power-law distributions of avalanche sizes, emerge.
(d) Distribution of charge displacement spikes (avalanches) P(S) of
the CG for 0.5 < £ < 0.6.
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FIG. 4. Finite-size scaling data collapse of the electron avalanche
distributions D(n) (a) according to Eq. (11) with 0.5 < £ < 0.6, i.e.,
close to &g,. For the largest system sizes the data seem to collapse well.
(b) shows a data collapse of the charge displacement distributions
P(S) according to Eq. (12) with 0.5 < £ < 0.6. Again, the data scale
well. Note that the symbols used are the same as in (a).

no system-spanning avalanches were found, moreover no
emergent avalanche size dependence is observed [Figs. 9(a)
and 9(b)]. For fields closer to the depinning field, i.e., £ 2 0.5,
the exponential fitting function [Eq. (10)] gives unsatisfactory
fitting results, therefore we additionally fitted the distribution
to a stretched exponential function

f(x) = ap exp[—(x/n})"]. (13)

The characteristic avalanche size n* defined through the
stretched exponential function is bounded in the thermody-
namic limit for all fields, especially close to the depinning
field: the inset of Fig. 9(d) shows the values of n* for the field
window 0.72 < £ < 0.77. The stretched exponential exponent
B has a strong field dependence as seen in Fig. 10. Atlow fields
B ~ 0.8 and as the field increases it monotonically decreases
to B~ 0.2 [53].

We observe that the CG model and the SR model have a
well defined depinning field transition, but that they differ in
the way they behave close to &,. The CG model total charge
displacement and electron hop avalanche distributions close to
the depinning field have a power-law shape (with power-law
exponent T &~ —1) with a system-size dependent exponential
cutoff. This finite-size effect vanishes in the thermodynamic
limit, revealing its scale-free behavior at &p. In clear contrast
the SR model total charge displacement and electron hop
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FIG. 5. (a) Depinning distributions for all system sizes studied of
the CG model. The vertical line represents the estimated depinning
field &qp. (b) The cumulative distribution function of the depinning
field for linear system sizes L > 10. The curves for different system
sizes cross a the depinning field value. The inset is a data collapse
assuming the universal function P, scales as Eq. (9).

avalanche distributions show no signs of scale-free avalanche
behavior (power-law shape) close to &gp and are best described
by a stretched exponential function, which is defined by the
exponent 8 and the parameter n*. The exponent 8 shows a
strong field dependence; it decreases monotonically as the
field is increased, while n* does not show any systematic

1/n*

O 1 1 1 1 }

0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 6. Characteristic avalanche size n*, computed using
Eq. (10), as a function of the applied field £ for the CG model.
As the field increases, the inverse of the characteristic avalanche size
1/n* decreases until at the depinning field &g, it becomes zero, i.e.,
n*(Eqp) — 00 (the line is a guide to the eye).
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FIG. 7. Thermodynamic limit extrapolation of the characteristic
avalanche size n* for the CG model in an electric field 0.5 < £ < 0.6
close the depinning field £y, = 0.603(5). We fit the data to Eq. (10)
with 1/n},, a, and w parameters. An optimal fit gives 1/n¢g =
0.0049(61) [w = 1.79(6)] with a quality-of-fit probability [49] Q =
0.994. Note that fixing 1/n%, = 0 gives Q = 0.998. This means that
ni, = 00, i.e., the presence of scale-free avalanches in this electric

field regime.
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FIG. 8. (a) Depinning distributions for all system sizes studied of
the SR model. The vertical line represents the estimated depinning
field £p. (b) The cumulative distribution function of the depinning
field for linear system sizes L > 16. The curves for different system
sizes cross a the depinning field value. Here the crossing seems
to happen in a region where it is not possible to distinguish it.
Nevertheless, as seen in the inset, assuming the universal function
Py scales as shown in Eq. (9) the data collapse is satisfactory.
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FIG. 9. Spinavalanches D(n) of the SR model at different electric
field ranges: (a) 0.50 < £ < 0.55, (b) 0.55 < £ < 0.60, (c) 0.65 <
€ <0.70,and (d) 0.72 < € < 0.77. Even for £ ~ £3X (d), there is no
sign of scale-free avalanches. The inset in (d) shows the n* estimates
for system sizes L > 16 and the gray horizontal line is their mean
value.
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FIG. 10. Stretched exponential exponent B of the SR model
as a function of the applied field £. The exponent B decreases
monotonically with the field. The vertical line shows the estimated
depinning field &, and the dashed line is a guide to the eye.

system-size dependence at any field, not even close to the
depinning field. The different avalanche distributions in the
SR and CG models hint towards a different mechanism behind
the depinning transition.

V. CONCLUSIONS

Our large-scale computational study of the Coulomb
glass has demonstrated that, under external electric fields
and nearest-neighbor particle-conserving hopping dynamics,
scale-free avalanches only occur in the vicinity of a character-
istic depinning field £g,. For small external electric fields, no
large avalanches are present, in agreement with the results of
Palassini and Goethe [44]. For a short-range variation of the
Coulomb glass model, we do not find any sign of scale-free
avalanches, not even close to the depinning electric field.
Furthermore, we find that the initial Coulomb gap vanishes as
the field is ramped up, suggesting that it is not a generic feature
on the hysteresis loop formed in an external electric field.
We empirically find a simple scaling ansatz to collapse the
avalanche and charge displacement distributions, reinforcing
the notion that the scale-free behavior of the CG emerges close
to the depinning electric field.

The scale-free behavior found in the CG is not a self-
organized critical (SOC) state, because an external parameter
has to be tuned [37,54-56], namely, the electric field £.
Nevertheless, it is interesting to note the difference between
the CG and the SR model: in the former the combination
of the diverging number of neighbors and disorder results

PHYSICAL REVIEW B 93, 094429 (2016)

in power-law distributions, which is not the case in the
latter. This behavior is very similar to that found for the
three-dimensional random-field Ising model [57-61], where
scale-free avalanches have been observed at a critical field
strength /.. These unexpected results for the Coulomb glass
show that a diverging number of neighbors is necessary but not
sufficient in a model Hamiltonian to show SOC behavior, and
that the dynamics of a model might play an important role for
showing SOC (i.e., the order-parameter conserving Kawasaki
dynamics used here vs single-spin flip dynamics used for the
random-field Ising model).

Our results bring into question the validity of the mean-
field picture of the Coulomb glass [10-13,16,17], predicting
extreme fragility of the ground state to external perturbations.
However, the generic absence of SOC for avalanches driven
by a uniform electric field may be related to the fact
that such large avalanches locally violate charge neutrality.
Other dynamical perturbations may couple differently to the
elementary excitations and may perhaps serve as a more
sensitive probe to the proposed SOC nature of the CG ground
state. This could be achieved by applying external fields that
do not directly couple to the uniform charge density, such
as varying the amplitude of the disorder potential. Such or
similar studies represent an opportunity to further elucidate
the long-standing mystery of the Coulomb glass, however,
exploring this exciting research direction remains a challenge
for future work.
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