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We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing
interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have
shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin
glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of
the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is
equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte
Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass
phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the
system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical
results suggest that avalanches (damage) can spread across the whole system with nonzero probability when
the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on
scale-free networks with competing interactions can be fragile when not in thermal equilibrium.
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I. INTRODUCTION

Scale-free networks play an integral role in nature, as well as
industrial, technological and sociological applications [1]. In
these networks, the edge degrees {ki} (the number of neighbors
each node has) are distributed according to a power law λ, with
the probability ℘k for a node to have k neighbors given by

℘k ∝ k−λ. (1)

In the meantime, there have been many studies of Boolean
variables on scale-free networks [2–5] and, more recently,
even with competing interactions [6–10]. There is general
consensus that stable ferromagnetic and spin-glass phases
emerge in these complex systems [10] and that for particular
choices of the decay exponent λ the critical temperature
diverges, i.e., Boolean variables with competing interactions
are extremely robust to local perturbations.

However, the behavior of these intriguing systems in an
external magnetic field—which can be interpreted as a global
bias—remains to be fully understood. Although a replica
ansatz works well when determining the critical temperature of
the system [7,10] in zero field, it is unclear if a stable spin-glass
state persists in a field. In addition, when studying the system
without local perturbations (i.e., at zero temperature), it is un-
clear if “damage” in the form of avalanches of Boolean variable
flips triggered by a field can spread easily across the system.

In this work we tackle the two aforementioned problems
numerically and show that at finite temperature Boolean
variables with competing interactions are remarkably robust
to global external biases. In particular, we show that a de
Almeida-Thouless line [11] persists to a regime of λ where the
system is not in the mean-field Sherrington-Kirkpatrick [12]
universality class, i.e., when λ < 4 [7,10].

Furthermore, we probe for the existence of self-organized
criticality (SOC) when driving the system at zero temperature

with an external magnetic field across a hysteresis loop.
SOC is a property of large dissipative systems to drive
themselves into a scale-invariant critical state without any
special parameter tuning [13–17]. It is a phenomenon found
in many problems ranging from earthquake statistics to the
structure of galaxy clusters. As such, studying SOC on scale-
free networks might help us gain a deeper understanding on
how avalanches, i.e., large-scale perturbations, might spread
across scale-free networks that are so omnipresent in nature.
Recent simulations [18] have shown that a diverging number
of neighbors is the key ingredient to obtain SOC in glassy spin
systems. In scale-free graphs the average edge degree diverges
if λ � 2. As such, it might be conceivable that in this regime
spin glasses on scale-free graphs exhibit SOC. However, it
is unclear what happens for λ > 2 where the number of
neighbors each spin has is finite in the thermodynamic limit
or how the fraction of ferromagnetic versus antiferromagnetic
bonds influences the scaling of the avalanche distributions.
Within the spin-glass phase, for Gaussian disorder and bimodal
disorder with the same fraction p of ferromagnetic and
antiferromagnetic bonds, we find that when λ � 2 Boolean
variables with competing interactions always display SOC
like the mean-field Sherrington-Kirkpatrick model [16]. For
λ > 2 and with bimodal disorder, a critical line in the p-λ
plane emerges along which perturbations to the system are
scale free but not self-organized critical because the fraction
of ferromagnetic bonds has to be carefully tuned. The latter
is reminiscent of the behavior found in the random-field Ising
model [19–23], as well as random-bond [24] and random-
anisotropy Ising models [25].

The paper is structured as follows. Section II introduces the
Hamiltonian studied, followed by numerical details, observ-
ables, and results from equilibrium Monte Carlo simulations
in Sec. III. Section IV presents our results on nonequilibrium
avalanches on scale-free graphs, followed by concluding
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remarks. In the Appendix we outline our analytical calcu-
lations to determine the de Almeida-Thouless for spin glasses
on scale-free graphs.

II. MODEL

The Hamiltonian of the Edwards-Anderson Ising spin glass
on a scale-free graph in an external magnetic field is given by

H({si}) = −
N∑

i<j

Jij εij si sj −
∑

i

Hisi, (2)

where the Ising spins si ∈ {±1} lie on the vertices of a scale-
free graph with N sites and the interactions are given by

P(Jij ,εij ) = ℘J (Jij )

[(
1 − K

N

)
δ(εij ) + K

N
δ(εij − 1)

]
.

(3)

If a bond is present, we set εij = 1, otherwise εij = 0. K

represents the mean connectivity of the scale-free graph. The
connectivity of site i, ki := ∑

j εij , is sampled from a scale-
free distribution as done in Ref. [10]. The interactions between
the spins Jij are independent random variables drawn from a
Gaussian distribution with zero mean and standard deviation
unity, i.e.,

℘J (Jij ) ∼ exp
(−J 2

ij

/
2
)
. (4)

In the nonequilibrium studies we also study bimodal-
distributed disorder where we can change the fraction of
ferromagnetic bonds p, i.e.,

℘J (Jij ) = pδ(Jij + 1) + (1 − p)δ(Jij − 1). (5)

Finally, for the finite-temperature studies we use random
fields drawn from a Gaussian distribution with zero mean and
standard deviation Hr in Eq. (2), instead of a uniform field.
This allows us to perform a detailed equilibration test of the
Monte Carlo method [26,27].

The scale-free graphs are generated using preferential
attachment with slight modifications [28]. Details of the
method are described in Ref. [10]. We impose an upper
bound on the allowed edge degrees, kmax = √

N . Although
we can, in principle, generate graphs with k exceeding

√
N ,

the ensemble is poorly defined in this case: Even randomly
chosen graphs cannot be uncorrelated [29–31]. Furthermore,
to prevent dangling ends that do not contribute to frustrated
loops in the system, we set a lower bound to the edge degree,
namely kmin = 3.

III. EQUILIBRIUM PROPERTIES IN A FIELD

In equilibrium, the behavior of spin glasses in a magnetic
field is controversial [27,32–36]. While the infinite-range
(mean-field) Sherrington-Kirkpatrick (SK) model [12] has a
line of transitions at finite field known as the de Almeida-
Thouless (AT) line [11] that separates the spin-glass phase
from the paramagnetic phase at finite fields or temperatures, it
has not been definitely established whether an AT line occurs in
systems with short-range interactions. Spin glasses on scale-
free networks are somewhat “in between” the infinite-range
and short-range limits depending on the exponent λ. As such,

it is unclear if a spin-glass state will persist when an external
field H is applied, especially when the spin-glass transition at
zero field occurs at finite temperatures, i.e., for λ > 3.

Note that spin glasses on scale-free graphs share the same
universality class as the SK model if λ > 4 [10]. As such, in this
regime, one can expect an AT line. However, for 3 < λ < 4,
where Tc < ∞, the critical exponents depend on the exponent
λ [7,10]. Therefore, it is unclear if a spin-glass state in a
field will persist. For λ � 3 the critical temperature diverges
with the system size, i.e., we also expect the system to have
a spin-glass state for finite fields. We therefore focus on two
values of λ, namely λ = 4.50 (deep within the SK-like regime
because λ = 4 has logarithmic corrections) [10] and λ = 3.75
(where the existence of an AT line remains to be determined).

A. Observables

In simulations, it is most desirable to perform a finite-size
scaling (FSS) of dimensionless quantities. One such quantity,
the Binder ratio [37], turns out to be poorly behaved in
an external field in short-range systems [38]. Therefore, to
determine the location of a spin-glass phase transition we
measure the connected spin-glass susceptibility given by

χ = 1

N

∑
i,j

[(〈sisj 〉T − 〈si〉T 〈sj 〉T )2]av, (6)

where 〈· · · 〉T denotes a thermal average and [· · · ]av an average
over both the bond disorder and different network instances. N
is the number of spins. To avoid bias, each thermal average is
obtained from separate copies (replicas) of the spins. This
means that we simulate four independent replicas at each
temperature.

For any spin glass outside the mean-field regime, the scaling
behavior of the susceptibility is given by [10]

χ = N2−ηC̃(N1/ν[β − βc]), (7)

where ν and η are the correlation length and susceptibility
exponents, respectively, and βc = 1/Tc is the inverse temper-
ature for a given field strength Hr .

For λ < 4 (see the Appendix for details) we expect the
critical exponent γ = 1. This is only possible if 2 − η = 1/ν

in Eq. (7). Using the standard scaling relation α + 2β + γ = 2,
the hyperscaling relation dν = 2 − α (which we assume will
hold when λ < 4), and allowing for the nonstandard meaning
of ν in this paper (it is equal to dν in standard notation where d

is here the dimensionality of the system), it follows for λ < 4,
where β = 1/(λ − 3) (see the Appendix and Ref. [7]) that

ν = λ − 1

λ − 3
and η = 2 − 1

ν
. (8)

For the case of λ = 3.75 this means that ν = 11/3 and
therefore η = 2 − 1/ν = 19/11. As such, curves of χ/N3/11

should have the same scaling behavior as the Binder ratio.
For λ > 4, the finite-size scaling form presented in Eq. (7)

is replaced by [27,39]

χ = N1/3C̃(N1/3[β − βc]). (9)

In this case the scaling is simpler because the exponents are
fixed and independent of λ, i.e., 1/ν = 2 − η = 1/3. Here,
curves of χ/N1/3 should have the same scaling behavior as
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the Binder ratio. Performing a finite-size scaling of the data
therefore allows one to detect the transition to high precision.

Finally, note that the aforementioned study is, strictly
speaking, only valid at zero field. Although γ = 1 across the
AT line, there is no explicit calculation of the critical exponent
β in a field. While our data suggest that the values of the
zero-field exponents might be the same as those for finite
external fields, the accuracy of our results for the exponents in
a field is limited by large finite-size corrections.

B. Equilibration scheme and simulation parameters

The simulations are done using the parallel tempering
Monte Carlo method [40,41]. The spins couple to site-
dependent random fields Hi chosen from a Gaussian dis-
tribution with zero mean [Hi]av = 0 and standard deviation
[H 2

i ]1/2
av = Hr . Simulations are performed at zero field as well

as at Hr = 0.1, 0.2, 0.3, and 0.4. Using Gaussian disorder, we
can use a strong equilibration test to ensure that the data are in
thermal equilibrium [10,26,27]. Here, the internal energy per
spin

U = (1/N )[〈H〉T ]av, (10)

with H defined in Eq. (2), has to equate an expression derived
from both the link overlap q4 given by

q4 = 1

Nb

∑
i,j

εij s
α
i sα

j s
β

i s
β

j , (11)

and the spin overlap

q = 1

Nb

∑
i

sα
i s

β

i . (12)

Here α and β represent two copies of the system with the same
disorder and Nb represents the number of neighbors each spin
has for a given sample (graph instance). Note that because in
Eq. (6) we already simulate four replicas, we actually perform
an average over all four-replica permutations.

The system is in thermal equilibrium if

U = U (q4) = − 1

T

[〈
Nb

N
(1 − q4) + H 2

r (1 − q)

〉]
av

. (13)

Sample data are shown in Fig. 1. The energy U computed
directly is compared to the energy computed from the link
overlap U (q4). The data for both quantities approach a limiting
value from opposite directions. Once U = U (q4), the data for
q2 (shifted for better viewing in Fig. 1) are also in thermal
equilibrium. The simulation parameters are shown in Table I.

C. Numerical results for λ = 4.50

Corrections to scaling are large for this model despite
the large system sizes and number of samples studied. As
previously stated, we expect that for λ = 4.50 a spin-glass
state is stable towards an external field because for λ > 4 the
system shares the same universality class as the SK model.
To determine the AT line, we plot χ/N1/3 versus the inverse
temperature β = 1/T . Because χ/N1/3 is a dimensionless
function [see Eq. (9)], data for different system sizes should
cross at the putative field-dependent transition temperature. To
cope with corrections to scaling and obtain a precise estimate
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FIG. 1. (Color online) Equilibration test for N = 8192 spins at
T = 1.500 (lowest temperature simulated) and λ = 3.75. Once the
data for the energy U and the energy computed from q4 [U (q4)] agree,
the system is in thermal equilibrium (shaded area). At this point data
for q2 are also independent of Monte Carlo time. Note that the data
for q2 are shifted by a constant factor of 1.1 for better comparison.
Error bars are smaller than the symbols.

of the critical temperature, we study the crossing temperatures
Tc(N,2N ) for pairs of system sizes N and 2N assuming

Tc(N,2N ) = Tc + A/Nω, (14)

where A is a fitting parameter and empirically ω = 1. An
example extrapolation is shown in Fig. 2 for λ = 4.50 and
Hr = 0.1. A linear fit is very stable and the extrapolation
to the thermodynamic limit clear. Statistical error bars are
determined via a bootstrap analysis [42] using the following
procedure: For each system size N and Nsa disorder real-
izations, a randomly selected bootstrap sample of Nsa disorder
realizations is generated. With this random sample, an estimate
of χ/N1/3 is computed for each temperature. The crossing
temperature for pairs of N and 2N is obtained by fitting
the data to a third-order polynomial and a subsequent root
determination. We repeat this procedure Nboot = 500 times for
each lattice size and then assemble Nboot complete data sets
(each having results for every system size N ) by combining
the ith bootstrap sample for each size for i = 1, . . ., Nboot. The
nonlinear fit to Eq. (14) is then carried out on each of these Nboot

sets, thus obtaining Nboot estimates of the fit parameters Tc and
A. Because the bootstrap sampling is done with respect to the
disorder realizations which are statistically independent, we
can use a conventional bootstrap analysis to estimate statistical
error bars on the fit parameters. These are comparable to the
standard deviation among the Nboot bootstrap estimates.

The obtained estimates of Tc are listed in Table II. Figure 3
shows the field-temperature phase diagram for λ = 4.50. The
shaded area is intended as a guide to the eye. The critical
line separates a paramagnetic (PM) from a spin-glass (SG)
phase. The dotted (blue) line represents the AT line computed
analytically (Appendix) in the limit of Hr → 0. For 4 < λ < 5
the shape of the AT line is given by Eq. (A17). The analytical
approximation fits the data for λ = 4.5 very well with Hr (T ) ∼
C4.5(1 − T/Tc)5/4 and C4.5 = 0.48(3).
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TABLE I. Parameters of the simulation: For each exponent λ

and system size N , we compute Nsa disorder or network instances.
Nsw = 2b is the total number of Monte Carlo sweeps for each of the
4NT replicas for a single instance, Tmin [Tmax] is the lowest [highest]
temperature simulated, and NT is the number of temperatures used in
the parallel tempering method for each system size N .

λ Hr N Nsa b Tmin Tmax NT

3.75 0.0 2048 9600 16 1.5000 3.0000 30
3.75 0.0 3072 9600 16 1.5000 3.0000 30
3.75 0.0 4096 9600 16 1.5000 3.0000 30
3.75 0.0 6144 9600 16 1.5000 3.0000 30
3.75 0.0 8192 9600 16 1.5000 3.0000 30

3.75 0.1 512 9600 17 0.9000 3.0000 50
3.75 0.1 768 9600 17 0.9000 3.0000 50
3.75 0.1 1024 9600 17 0.9000 3.0000 50
3.75 0.1 1536 9600 18 0.9000 3.0000 50
3.75 0.1 2048 2400 18 0.9000 3.0000 50

3.75 0.2 768 9600 17 0.9000 3.0000 50
3.75 0.2 1024 9600 17 0.9000 3.0000 50
3.75 0.2 1536 9600 18 0.9000 3.0000 50
3.75 0.2 2048 2400 18 0.9000 3.0000 50
3.75 0.2 4096 2400 19 0.9000 3.0000 50

3.75 0.3 256 9600 17 0.9000 3.0000 50
3.75 0.3 512 9600 18 0.9000 3.0000 50
3.75 0.3 1024 9600 18 0.9000 3.0000 50
3.75 0.3 2048 2400 18 0.9000 3.0000 50

3.75 0.4 256 9600 18 0.9000 3.0000 50
3.75 0.4 512 9600 18 0.9000 3.0000 50
3.75 0.4 1024 9600 18 0.9000 3.0000 50
3.75 0.4 2048 2400 18 0.9000 3.0000 50

4.50 0.0 1024 9600 16 1.0000 3.0000 30
4.50 0.0 2048 9600 16 1.0000 3.0000 30
4.50 0.0 4096 9600 16 1.0000 3.0000 30
4.50 0.0 8192 9600 16 1.0000 3.0000 30

4.50 0.1 512 9600 17 0.9000 3.0000 50
4.50 0.1 1024 9600 17 0.9000 3.0000 50
4.50 0.1 2048 9600 18 0.9000 3.0000 50
4.50 0.1 4096 2400 18 0.9000 3.0000 50

4.50 0.2 256 9600 18 0.6000 3.0000 50
4.50 0.2 512 9600 18 0.6000 3.0000 50
4.50 0.2 1024 9600 18 0.6000 3.0000 50
4.50 0.2 2048 2400 19 0.6000 3.0000 50

4.50 0.3 64 9600 18 0.3000 3.0000 50
4.50 0.3 128 9600 19 0.3000 3.0000 50
4.50 0.3 256 9600 20 0.3000 3.0000 50
4.50 0.3 512 9600 22 0.3000 3.0000 50

4.50 0.4 90 9600 19 0.3000 3.0000 50
4.50 0.4 128 9600 19 0.3000 3.0000 50
4.50 0.4 180 9600 19 0.3000 3.0000 50
4.50 0.4 256 9600 20 0.3000 3.0000 50

D. Numerical results for λ = 3.75

Because for λ < 4 we are no longer in the SK universality
class, it is a priori unclear if a spin-glass state in a field
will exist. Furthermore, when λ = 3.75, a finite-size scaling
according to Eq. (7) has to be performed. Because it is
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FIG. 2. (Color online) Extrapolation to the thermodynamic limit
for the critical temperature Tc for λ = 4.50 and Hr = 0.1. We deter-
mine the crossing points of critical temperatures of the susceptibility
expression for pairs of system sizes N and 2N . Using Eq. (14) with
ω = 1 we extrapolate the data to the thermodynamic limit. This allows
us to take into account corrections to scaling in an unbiased way.

not possible to define a distance metric on a scale-free
network, there is no notion of a correlation length or spin-spin
correlation function. As such, the critical exponents ν (that
describes the divergence of the correlation length) and η

(also known as the anomalous dimension) have to be treated
carefully. However, we will assume that Eq. (7) is valid in this
regime on generic finite-size scaling grounds and treat ν and η

as parameters when Hr > 0 with no special meaning attached
to them. In addition, we fix ν = 11/3 and η = 2 − 1/ν—the
zero-field values of the critical exponents—and scale the data

TABLE II. Critical parameters Tc, ν, and η for a spin glass with
Gaussian random bonds defined on a scale-free graph. The data
for λ = 4.50 have been determined using the mean-field finite-size
scaling expression in Eq. (9). In this case one can, in principle, define
η = 5/3 and ν = 3, although these should be viewed as parameters
placed in Eq. (7) to obtain Eq. (9). For λ = 3.75 we determine the
critical parameters using Eq. (7). The starred estimates of Tc for
Hr > 0 have been determined by using the zero-field estimates of
η = 19/11 and ν = 11/3 as fixed. Both Tc and T 

c agree within error
bars, except statistical fluctuations are smaller for T 

c because there
are fewer fitting parameters.

λ Hr Tc T 
c ν η

3.75 0.0 1.98(2) 1.97(1) 3.56(17) 1.72(1)
3.75 0.1 1.67(5) 1.68(3) 4.42(73) 1.70(3)
3.75 0.2 1.32(8) 1.39(5) 6.53(61) 1.72(2)
3.75 0.3 1.20(6) 1.16(4) 3.31(32) 1.74(2)
3.75 0.4 0.97(7) 1.00(4) 3.68(46) 1.72(2)

4.50 0.0 1.39(1) 3 5/3
4.50 0.1 1.03(3) 3 5/3
4.50 0.2 0.66(5) 3 5/3
4.50 0.3 0.55(5) 3 5/3
4.50 0.4 0.46(4) 3 5/3
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FIG. 3. (Color online) Field Hr vs temperature T phase diagram
for an Ising spin glass on a scale-free graph with λ = 4.50. The data
points separate a paramagnetic (PM) from a spin-glass (SG) state.
The shaded area is intended as a guide to the eye. The dotted (blue)
line is a calculation of the AT line in the Hr → 0 limit.

at finite fields assuming these exponents are valid also when
Hr > 0.

To determine Tc(Hr ), we perform a finite-size scaling analy-
sis of the susceptibility data according to Eq. (7). To determine
the optimal value of Tc = 1/βc that scales the data best we
use the approach developed in Ref. [42]. We assume that the
scaling function in Eq. (7) can be represented by a third-order
polynomial y(x) = c0 + c1x + c2x

2 + c3x
3 for |x| � 1 and do

a global fit to the seven parameters ci with i ∈ {0, . . . ,3},
βc, η, and ν. Here y = χ/N2−η and x = N1/ν[β − βc]. After
performing a Levenberg-Marquardt minimization combined
with a bootstrap analysis we determine the optimal critical
parameters with an unbiased statistical error bar.

Figure 4 shows two representative scaling collapses at
zero and nonzero field values. The data scale well and allow
one to determine the critical temperature with good precision
despite the difficulties that scaling the spin-glass susceptibility
poses [42]. Note that for zero field we obtain η = 1.72(1)
and ν = 3.56(17), which agree very well with the analytical
expressions η = 19/11 = 1.72 . . . and ν = 11/3 = 3.66 . . ..
However, for finite fields deviations are visible. A summary
of the relevant fitting parameters is listed in Table II. Note
that the value of η for different fields agrees within error bars.
However, fluctuations are larger for ν. One can expect that
the universality class of the system does not change along the
AT line [43]. Therefore, and because it is hard to simulate
large systems for large fields, we also determine Tc by fixing
η = 19/11 and ν = 11/3. As listed in Table II, both estimates
agree within error bars. This is also visible in Fig. 5 which
shows the AT line for λ = 3.75. Overall, the analysis using the
zero-field estimates for η and ν gives more accurate results.
The dotted (blue) line in Fig. 5 is our analytical estimate of
the AT line computed in the Hr → 0 limit (Appendix). The
estimate fits the data well with Hr (T ) ∼ C3.75(1 − T/Tc)7/6

and C3.75 = 0.76(5).
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FIG. 4. (Color online) Finite-size scaling analysis of χ/N2−η as
a function of N 1/ν(β − βc) for an Ising spin glass on a scale-free
network with Gaussian disorder and λ = 3.75. The data at zero field
(top panel) scale very well. The bottom panel shows representative
data for Hr = 0.1 scaled according to Eq. (7). Error bars are smaller
than the symbols.

IV. NONEQUILIBRIUM PROPERTIES IN A FIELD

It has recently been shown that a key ingredient for the
existence of SOC in glassy spin systems is a diverging number
of neighbors [18]. Scale-free networks have a power-law
degree distribution. If the exponent λ � 2, then scale-free
networks have an average number of neighbors K that diverges
with the system size. Therefore, it is possible that SOC might
be present in this regime. To test this prediction, in this section
we compute nonequilibrium avalanche distributions of spin
flips driven by an external field.

A. Numerical details and measured observables

We study the Hamiltonian in Eq. (2) either with Gaussian
[Eq. (4)] or bimodal [Eq. (5)] disorder. The external magnetic
field used to drive the avalanches is uniform rather than drawn
from a Gaussian distribution, i.e., Hi = H in Eq. (2). Spin-flip
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FIG. 5. (Color online) Field Hr vs temperature T phase diagram
for an Ising spin glass on a scale-free graph with λ = 3.75. The
data points separate a paramagnetic (PM) from a spin-glass (SG)
state. The shaded area is intended as a guide to the eye. The dotted
(blue) line is a calculation of the AT line in the Hr → 0 limit. Note
that estimates for the critical temperature Tc from a finite-size scaling
analysis (FSS) according to Eq. (7) with Tc, η, and ν as free parameters
agree within error bars with estimates at finite fields where η = 19/11
and ν = 11/3 are used as fixed parameters (labeled with “Fixed” in
the plot).

avalanches are triggered by using zero-temperature Glauber
dynamics [18,19,21,44]. In this approach one computes the
local fields

hi =
∑

j

Jij Sj − H (15)

felt by each spin. A spin is unstable if the stability hiSi < 0
is negative. The initial field H is selected to be larger than the
largest local field, i.e., H > |hi | ∀i. Furthermore, we set all
spins Si = +1. The spins are then sorted by local fields and
the field H reduced until the stability of the first sorted spin is
negative, therefore making the spin unstable. This (unstable)
spin is flipped, then the local fields of all other spins updated,
and the most unstable spin is flipped again until all spins
are stable, i.e., the avalanche ends. Simulation parameters are
shown in Table III.

We measure the number of spins that flipped until the
system regains equilibrium and record the avalanche size
distributions D(n) for all triggered avalanches of size n until
Si → −Si ∀i. When SOC is present (as for the SK model), we
expect the avalanche distributions to be power-law distributed
with an exponential cutoff that sets in at a characteristic
size n∗. Only if n∗(N ) → ∞ for N → ∞ without tuning
any parameters does the system exhibit true SOC. n∗ is
determined by fitting the tail of the distributions to D(n) ∼
exp[−n/n∗(N )] with n∗(N ) a fitting parameter. This procedure
is repeated for different values of λ and the thermodynamic
value of n∗ is determined by an extrapolation in the system
size N .

TABLE III. Simulation parameters in the nonequilibrium study
with both Gaussian and bimodal-distributed random bonds: For
each exponent λ we study systems of N = 500 × 2m spins with
m ∈ {1, . . . ,mmax}. For Gaussian disorder, when λ < 4, we also
simulate systems with 48 000 spins (m = 6 corresponds to 32 000
spins). All distributions are computed using Nsa disorder realizations.

Disorder type λ mmax Nsa

Gaussian 1.50 6 12 000
Gaussian 2.00 6 12 000
Gaussian 2.50 6 12 000
Gaussian 3.00 6 12 000
Gaussian 3.50 6 12 000
Gaussian 4.00 5 12 000
Gaussian 4.50 5 12 000
Gaussian 5.00 5 12 000
Gaussian 5.50 5 12 000
Gaussian 6.00 4 12 000
Gaussian 6.50 4 12 000
Gaussian 7.00 4 12 000

Bimodal 1.50 6 12 000
Bimodal 2.00 6 12 000
Bimodal 2.25 6 12 000
Bimodal 2.50 6 12 000
Bimodal 3.00 6 12 000
Bimodal 3.50 6 12 000
Bimodal 4.00 6 12 000
Bimodal 4.50 5 12 000
Bimodal 5.00 5 12 000

B. Numerical results for Gaussian disorder

We start by showing avalanche distributions for selected
values of the exponent λ which show the characteristic
behavior of the system.

Figure 6 (top panel) shows avalanche distributions D(n) for
λ = 4.50 recorded across the whole hysteresis loop (bottom
panel). Here, the number of neighbors does not diverge with
the system size because λ = 4.50 > 2. The distributions show
no system size dependence. The fact that the data show a
curvature in a log-log plot clearly indicate that these are not
power laws. Although tens of thousands of spins are simulated,
the largest avalanches found span less than 1% of the system.
The vertical line represents the extrapolated typical avalanche
size n∗ which is rather small and indicates that the system is
not in an SOC state.

In contrast, Fig. 7, top panel, shows data for λ = 1.5 <

2 in the regime where the number of neighbors diverges
with the system size. The distributions D(N ) have a clearly
visible power-law behavior with a crossover size n∗(N ) that
grows with increasing system size. Furthermore, a careful
extrapolation to the thermodynamic limit shows that 1/n∗ =
−0.0012(23), i.e., n∗ = ∞. The hysteresis loop shown in the
bottom panel of Fig. 7 suggests that for this value of λ larger
rearrangements of spins are possible.

We have repeated these simulations for several values of
the exponent λ. Our results are summarized in Fig. 8, where
1/n∗ is plotted as a function of λ. Clearly, 1/n∗ = 0 only
if λ � 2, i.e., in the regime where the number of neighbors
diverges, in perfect agreement with the results of Ref. [18] for
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FIG. 6. (Color online) Top: Avalanche distribution D(n) for the
Edwards-Anderson spin-glass model with Gaussian disorder on scale-
free networks with λ = 4.50 recorded across the whole hysteresis
loop. The data show no system size dependence. The vertical (black)
line marks the extrapolated value of n∗. Clearly, no signs of SOC are
visible in the data. Bottom: Magnetization M = (1/N )

∑
i si vs field

H hysteresis loop for λ = 4.50 and 48 000 spins. The data are for one
single sample and meant as an illustration for the typical behavior of
the system in a field. The inset shows a zoom into the boxed region.
The discrete steps due to magnetization jumps in the hysteresis loop
are clearly visible.

hypercubic systems, as well as the SK model [16]. Note that we
have also recorded distributions of magnetization jumps (not
shown) [16,18] that qualitatively display the same behavior as
the avalanche size distributions.

C. Numerical results for bimodal disorder

So far, we have only probed for the existence of SOC
within the spin-glass phase. Bimodal disorder [Eq. (5)] has the
advantage that one can easily tune the fraction of ferromagnetic
bonds by changing p. When p = 1 the system is a pure
ferromagnet, whereas for p = 0 it is an antiferromagnet and
for p = 0.5 a spin glass (comparable to the Gaussian case).

Sethna et al., as well as others, have studied the random-
field Ising model [19–24,45] where the level of ferromagnetic
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FIG. 7. (Color online) Top: Avalanche distribution D(n) for the
Edwards-Anderson spin-glass model with Gaussian disorder on
scale-free networks with λ = 1.5 recorded across the whole hysteresis
loop. For λ = 1.5 < 2.0 the number of neighbors diverges. The
data show a clear system-size dependence with the distributions
becoming increasingly power-law-like for increasing system size
N . As shown in Fig. 8, the extrapolated cutoff value is n∗ = ∞,
i.e., the system exhibits true SOC behavior. Bottom: Magnetization
M = (1/N )

∑
i si vs field H hysteresis loop for λ = 1.50 and 48 000

spins. The data are for one single sample and meant as an illustration
for the typical behavior of the system in a field. The inset shows a
zoom into the boxed region. The discrete steps due to magnetization
jumps in the hysteresis loop are clearly visible. Qualitatively,
the data seem to show larger rearrangements as for λ = 4.50
(Fig. 6).

behavior is tuned by changing the width of the random-field
distribution σ . In particular, for three space dimensions, there is
a critical value σc where a jump in the hysteresis loop appears,
i.e., large system-spanning rearrangements of the spins start to
occur when σ > σc. We call this regime supercritical because
here system-spanning avalanches will always occur in a
predominant fashion. For σ = σc true power-law distributions
of the spin avalanches are obtained, whereas for σ < σc no
system-spanning rearrangements are found. We call the latter
scenario subcritical.
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FIG. 8. (Color online) Characteristic avalanche size n∗ extrap-
olated to the thermodynamic limit for different values of λ and
Gaussian disorder. Plotted are 1/n∗ vs λ. Only when 1/n∗ = 0 (here
within error bars) we can expect the system to show SOC behavior.
This is only the case for λ � 2, i.e., in the regime where the number
of neighbors diverges.

Here we find a similar behavior when tuning the fraction of
ferromagnetic bonds p. Figure 9 shows the typical behavior
we observe for the avalanche distributions D(n). For p = 0.63
and λ = 3.50 (Fig. 9 top panel), the distributions show small
system-size dependence. A detailed analysis of the character-
istic avalanche size n∗(N ) shows that it extrapolates to a finite
value in the thermodynamic limit. This means we are in the
subcritical regime. However, for λ = 3.50 and p = 0.66 clear
power laws in the distributions D(n) emerge (Fig. 9, center
panel). Here n∗ → ∞, i.e., true power-law behavior. However,
for λ = 3.50 and p = 0.70, although most of the distributions
show a clear power-law-like behavior, a bump for large n

appears (Fig. 9, bottom panel). In this case the probability
for very large rearrangements increases. Direct inspection of
the underlying hysteresis loops (not shown) shows a jump in
the magnetization, i.e., we are in the supercritical regime. We
repeat these simulations for different exponents λ and vary the
fraction of ferromagnetic bonds p until the distributions are
power laws. This allows us to construct the phase diagram
shown in Fig. 10. We find a critical line pc(λ) (triangles,
solid curve) that separates the subcritical region from the
supercritical region. Along the critical line avalanche size
distributions are power laws. Note that this critical line shows
no close correlations with the spin-glass–to–ferromagnetic
boundary computed in Ref. [10] (dotted line in Fig. 10). For
λ � 2 and when p = 0.5, i.e., within the spin-glass phase
where the graph connectivity diverges, we recover true SOC.

V. SUMMARY AND CONCLUSIONS

We have studied Boolean (Ising) variables on a scale-free
graph with competing interactions in an external field both in
thermal equilibrium, as well as in a nonequilibrium hysteretic
setting.
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FIG. 9. (Color online) Avalanche distribution D(n) for the
Edwards-Anderson spin-glass model with bimodal disorder on scale-
free networks with λ = 3.5 recorded across the whole hysteresis
loop. Top panel: Data for p = 0.63 < pc. Here the system displays
subcritical behavior, i.e., the characteristic avalanche size n∗ is finite.
Center panel: For p = 0.66 ≈ pc the system is in the critical regime
where the distributions are well described by power laws. Bottom
panel: For p = 0.70 > pc the system is in the supercritical regime.
A jump in the hysteresis loop occurs, i.e., very large rearrangements
are very probable, as can be seen in the bump that develops in the
distributions D(n) for large n.
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FIG. 10. (Color online) Fraction of ferromagnetic bonds p vs λ

phase diagram for the Edwards-Anderson spin-glass model on scale
free networks with bimodal interactions between the spins. For λ > 2
a critical line pc(λ) separates the subcritical regime where avalanches
are small, from the supercritical regime where system-spanning
avalanches are very common. Along the critical line pc(λ) (triangles,
solid line) avalanche sizes are distributed according to power laws.
For λ � 2 the number of neighbors diverges. In this regime for
p = 0.5 the system displays avalanches that are power laws, i.e.,
true SOC. The dotted line represents the spin-glass–to–ferromagnetic
phase boundary from Fig. 2 in Ref. [10].

At finite temperatures, we show that for λ > 3, where
at zero field the system orders at finite temperatures [10],
spin glasses on scale-free graphs do order in a field, i.e.,
their behavior is very much reminiscent of the mean-field SK
model in a field. Naively, one could have expected that outside
the SK regime (λ < 4) a behavior reminiscent of (diluted)
one-dimensional spin glasses with power-law interactions [46–
48] emerges where a spin-glass state in a field seems stable
only within the mean-field regime of the model [27,33].
These results again illustrate the superb robustness of Boolean
decision problems on scale-free networks to perturbations.
In this case, a stable spin-glass state emerges at nonzero
temperatures even in the presence of magnetic fields (external
global biases).

At zero temperature, when driven with an external field,
Boolean decision problems on scale-free networks show
self-organized critical behavior only when the number of
neighbors diverges with the system size, i.e., for λ � 2. For
λ > 2 and with bimodal disorder, a behavior reminiscent
of the random-field Ising model is found [19–24] where
system-spanning avalanches only occur whenever the fraction
of ferromagnetic bonds pc(λ) is tuned towards a critical value.
These results show that “damage” can easily spread on real
networks where typically λ � 3. Therefore, in contrast the
robustness found at finite temperatures, Boolean decision
problems on scale-free networks show a potential fragility
when driven in a nonequilibrium scenario at zero temperature.

It will be interesting to perform these simulations for real
networks in the future, as well as the study of q-state Potts
variables [49].
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APPENDIX: ANALYTICAL FORM OF THE DE
ALMEIDA-THOULESS FOR Hr → 0

In this Appendix we derive analytically the form of the AT
line in the limit when Hr → 0 for a type of scale-free network
which is very convenient for analytical calculations, namely
the static model used by Kim et al. [7], whose procedures and
equations we shall closely follow. In this model the number of
vertices N is fixed. Each vertex i (i = 1,2, . . . ,N ) is given a
weight pi , where

pi = i−μ

ζN (μ)
, (A1)

where μ is related to λ via λ = 1 + 1/μ and

ζN (μ) ≡
N∑

j=1

j−μ ≈ N1−μ

1 − μ
. (A2)

Only μ in the range [0,1) (i.e., λ > 2) will be discussed. Two
vertices i and j are selected with probabilities pi and pj and if
i �= j they are connected with a single bond unless the pair are
already connected. The process is repeated NK/2 times. Then,
in such a network, the probability that a given pair of vertices
is not connected by an edge is 1 − fij = (1 − 2pipj )NK/2 ≈
exp(−NKpipj ), and the probability that they are connected by
an edge is fij = NKpipj . This product form for fij enabled
Kim et al. [7] to proceed analytically. Note that here K is
the mean degree of the scale-free network generated by this
procedure.

We shall work in the paramagnetic phase where the spin
glass is replica symmetric, i.e., where

qab =
∑

i

pi

〈
sa
i sb

i

〉 = q, (A3)

independently of the replica labels a = 1,2, . . . ,n, where n

is set to zero at the end of the calculation. In qab, a �= b.
Kim et al. [7] showed then that the higher-order parameters
such as qabcd = ∑

i pi〈sa
i sb

i s
c
i s

d
i 〉 can be neglected when q is

sufficiently small—that is, in the region near Tc studied in
this Appendix—and that a “truncation” approximation can be
made for q,

q =
∫

Dz

N∑
i=1

pi tanh2
(
z

√
NKT2piq + H 2

r

/
T 2

)
, (A4)
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where ∫
Dz ≡ 1√

2π

∫ ∞

−∞
dze−z2/2 (A5)

and

T2 = 〈tanh2(Jij /T )〉. (A6)

Here the average is over the distribution of bonds, assumed
symmetric, i.e., P (Jij ) = P (−Jij ). The random field of vari-
ance H 2

r was not included in the Kim et al. [7] paper, but
Eq. (A4) is consistent with the equations for a spin glass in a
random field studied in Ref. [50] (in the appropriate limit).

In the Hr–T phase diagram it is expected that the assump-
tion of replica symmetry holds until the AT line is crossed.
The equation of the line where the spin-glass susceptibility
diverges follows from the expressions given in Ref. [7]:

(KT2)−1 =
∫
Dz

N∑
i=1

Np2
i sech4(z√NKT2piq + H 2

r

/
T 2

)
.

(A7)
The solution of Eqs. (A4) and (A7) together fix the equation
of the AT line.

It is convenient to convert the sums over i to integrals. Let
x = i/N . Then

∑N
i=1 → ∫ 1

0 Ndx, and in the large-N limit
Eq. (A4) becomes

q =
∫

Dz

∫ 1

0
dx

1 − μ

xμ
tanh2

(
z

√
Q′/xμ + H 2

r

/
T 2

)
, (A8)

where Q′ = (1 − μ)KT2q. Equation (A7) becomes on con-
verting the sum to an integral

(KT2)−1 =
∫

Dz

∫ 1

0
dx

(1 − μ)2

x2μ

× sech4
(
z

√
Q′/xμ + H 2

r

/
T 2

)
. (A9)

We shall only study explicitly here the case where 3 <

λ < 4 (1/3 < μ < 1/2). Similar procedures can be used to
determine the AT line when λ > 4. We first rewrite Eq. (A8)
as

q =
∫

Dz

∫ 1

0
dx

1 − μ

xμ

{
z2

(
Q′/xμ + H 2

r

/
T 2

)
+ [

tanh2
(
z

√
Q′/xμ + H 2

r

/
T 2

) − z2
(
Q′/xμ + H 2

r

/
T 2

)]}
.

(A10)

The integral over z involving just the first line of Eq. (A10)
can be done to yield

q = (K/Kp)T2q + H 2
r

/
T 2 + R(Hr,q), (A11)

where

Kp = 1 − 2μ

(1 − μ)2
(A12)

and

R(Hr,q) =
∫

Dz

∫ 1

0
dx

1 − μ

xμ

[
tanh2

(
z

√
Q′/xμ + H 2

r

/
T 2

)
− z2

(
Q′/xμ + H 2

r

/
T 2

)]
. (A13)

One can show that R(Hr,q) = R(0,q) + O(Q′H 2
r /T 2). For

small q, the term in addition to R(0,q) is negligible in
comparison to the term H 2

r /T 2 in Eq. (A11) and can be
dropped. We next rewrite the integral for R(0,q) as

R(0,q) =
∫

Dz

(∫ ∞

0
dx −

∫ ∞

1
dx

)

× 1 − μ

xμ
[tanh2(z

√
Q′/xμ) − z2Q′/xμ]. (A14)

The integral from 1 to ∞ can be evaluated for small Q′ by
expanding the tanh in a power series in Q′. The integrals
converge for λ < 4 and the leading contribution is

2Q′2(1 − μ)
λ − 1

4 − λ
+ O(Q′3).

The integral from 0 to ∞ can by evaluated after a vari-
able change w = z

√
Q′/xμ when it gives a contribution

F (λ)Q′λ−2, where

F (λ) = P (λ)
∫ ∞

0
dw w3−2λ[tanh2 w − w2]. (A15)

Here P (λ) = (1 − μ)�(λ − 3/2)2λ−1(λ − 1)/
√

π . Thus, for
3 < λ < 4, the equation of state is

H 2
r /T 2 = q[1 − KT2/Kp] − F (λ)Q′λ−2

− 2Q′2(1 − μ)
λ − 1

4 − λ
+ O(Q′3), (A16)

which agrees with the expression given in Ref. [7] when
Hr = 0.

When 4 < λ < 5, one can proceed in a similar fashion.
The equation of state is unchanged except F (λ) becomes F̃ (λ)
where

F̃ (λ) = P (λ)
∫ ∞

0
dw w3−2λ[tanh2 w − w2 + 2w4/3].

(A17)
For λ > 5 the term in Q′λ−2 is subdominant to the term of
order Q′3 and can be ignored to leading order.

We next deduce some simple features which follow from the
equations of state. In the high-temperature state q ∼ H 2

r /T 2,
and in the limit of Hr/T → 0,

χSG → q(
H 2

r /T 2
) = 1

1 − KT2/Kp

. (A18)

The zero-field spin-glass susceptibility χ diverges at the
zero-field transition temperature Tc where T2 = Kp/K and
at lower temperatures q becomes nonzero. The divergence of
this susceptibility as the transition is approached is of the same
form for all λ > 3. This means for the critical exponent

γ = 1 (λ > 3). (A19)

However, the exponent β in q ∼ (1 − T/Tc)β depends on λ.
We obtain

β = 1

λ − 3
(3 < λ < 4), (A20)

β = 1 (λ > 4). (A21)
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We can use Eq. (A9) in conjunction with the equations of
state to determine the form of the AT line as Hr/T →
0. Once again, we shall start in the region 3 < λ <

4 and write the term sech4(z
√

Q′/xμ + H 2
r /T 2) as 1 +

[sech4(z
√

Q′/xμ + H 2
r /T 2) − 1]. The term in unity in the

integral evaluates to 1/Kp, so

(KT2)−1 = 1/Kp + S(Hr,q), (A22)

where

S(Hr,q) =
∫

Dz

∫ 1

0
dx

(1 − μ)2

x2μ

× [
sech4

(
z

√
Q′/xμ + H 2

r

/
T 2

) − 1
]
. (A23)

Once again, it is sufficient to evaluate S(Hr,q) at Hr = 0; the
corrections ofO(H 2

r /T 2) are negligible compared to the terms
which we retain. Next we rewrite the integral as

S(0,q) =
∫

Dz

(∫ ∞

0
dx −

∫ ∞

1
dx

)

× (1 − μ)2

x2μ
[sech4(z

√
Q′/xμ) − 1]. (A24)

The integral from 0 to ∞ can be evaluated after making
the same variable change w = z

√
Q′/xμ, when it gives the

contribution G(λ)Q′λ−3, where

G(λ) = 2λ−2(1 − μ)2(λ − 1)�(λ − 5/2)/
√

π

×
∫ ∞

0
dw w5−2λ[sech4w − 1].

The integral from 1 to ∞ can be done in a power series in Q′
and the leading term of this contribution to S(0,q) is

−2(1 − μ)2Q′/(1 − 3μ) + O(Q′2).

We can now calculate the AT line: It is simplest to combine
Eqs. (A16) and (A22) to eliminate the term in (1 − KT2/Kp)
when one finds that

H 2
AT/T 2 = C(λ)Q′λ−2 + O(Q′3), (A25)

where

C(λ) = 1√
π

2λ−2(λ − 2)�(λ − 5/2)

×
∫ ∞

0
dw w5−2λ{sech4w − 1 − 2(λ − 5/2)

× [tanh2 w/w2 − 1]}. (A26)

The integral has to be done numerically but it stays finite as
λ → 4. For example, C(3.75) ≈ 0.530. The terms of O(Q′2)

cancel from Eq. (A25). Thus, in the range 3 < λ < 4, the
equation of the AT line in terms of the temperature rather than
Q′ is just

H 2
AT/T 2 ∼ (1 − T/Tc)

λ−2
λ−3 (3 < λ < 4). (A27)

Note that this is in agreement with the scaling form

H 2
AT/T 2 ∼ (1 − T/Tc)β+γ , (A28)

on inserting the vales for β = 1/(λ − 3) and γ = 1 for 3 <

λ < 4.
In the range 4 < λ < 5, a similar expression holds for

H 2
AT/T 2 as in Eq. (A25), but C(λ) becomes C̃(λ) where

C̃(λ) = 1√
π

2λ−2(λ − 2)�(λ − 5/2)

×
∫ ∞

0
dw w5−2λ{sech4w − 1 + 2w2 − 2(λ − 5/2)

× [tanh2 w/w2 − 1 + 2w2/3]}. (A29)

Because in this range the exponent Q′ ∼ (1 − T/Tc), the form
of the AT line is

H 2
AT/T 2 ∼ (1 − T/Tc)λ−2 (4 < λ < 5). (A30)

Finally, in the range λ > 5, the term in Q′λ−2 is subdominant
compared with the term in Q′3 and

H 2
AT/T 2 ∼ (1 − T/Tc)3 (λ > 5), (A31)

which is the familiar form of the AT line in the SK model.
One can also use the static model to investigate the

behavior when λ < 3. The spin-glass phase with broken replica
symmetry exists in zero field up to infinite temperature,
i.e., Tc is infinite when λ < 3 [7]. However, in the interval
5/2 < λ < 3 the application of a large-enough random field Hr

can restore replica symmetry. By solving Eqs. (A8) and (A9)
it can be shown that this happens at a field HAT, where, as
before, β2H 2

AT ∼ Q′λ−2 where

HAT ∼ T
5−2λ
3−λ (2.5 < λ < 3). (A32)

for the limit when T → ∞. This phase boundary is, as usual,
for the thermodynamic limit when N → ∞. The behavior
which would be seen in simulations at finite system size N will
be complicated by an unfamiliar finite-size behavior because,
for this λ range, Tc at zero field is infinite. When λ < 5/2 we
think that for all Hr and T the spin-glass phase has broken
replica symmetry and so as a consequence, there will then be
no AT line.
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