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We investigate the conditions required for general spin systems with frustration and disorder to display

self-organized criticality, a property which so far has been established only for the fully connected infinite-

range Sherrington-Kirkpatrick Ising spin-glass model [Phys. Rev. Lett. 83, 1034 (1999)]. Here, we study

both avalanche and magnetization jump distributions triggered by an external magnetic field, as well as

internal field distributions in the short-range Edwards-Anderson Ising spin glass for various space

dimensions between 2 and 8, as well as the fixed-connectivity mean-field Viana-Bray model. Our numerical

results, obtained on systems of unprecedented size, demonstrate that self-organized criticality is recovered

only in the strict limit of a diverging number of neighbors and is not a generic property of spin-glass models

in finite space dimensions.

DOI: 10.1103/PhysRevLett.111.097203 PACS numbers: 75.10.Nr, 05.50.+q, 64.60.�i, 75.40.Mg

Self-organized criticality (SOC) refers to the tendency
of large dissipative systems to drive themselves into a
scale-invariant critical state without any special parameter
tuning [1,2]. These phenomena are of crucial importance
because fractal objects displaying SOC are found every-
where [3], e.g., in earthquakes, in the structure of dried-out
rivers, in the meandering of sea coasts, or in the structure
of galactic clusters. Understanding its origin, however,
represents a major unresolved puzzle because in most
equilibrium systems, critical behavior featuring scale-free
(fractal) patterns is found only at isolated critical points
and is not a generic feature across phase diagrams.

Pioneering work in the 1980s provided insights into the

possible origin of SOC by identifying a few theoretical

examples that display it. The ‘‘sandpile’’ [4] and forest-

fire models [5] are hallmark examples of dynamical sys-

tems that exhibit SOC. However, these models feature

ad hoc dynamical rules, without showing how these can

be obtained from an underlying Hamiltonian. Major ques-

tions thus remain: Can one obtain SOC from a Hamiltonian

system, beyond invasion percolation [6,7]? Is this behavior

a feature of high-dimensional models, models with a diver-

ging number of neighbors and/or long-range interactions, or

is it a generic property of a broad class of systems?
Work in the 1990s offered a glint of hope. The first

Hamiltonian model displaying SOC without any parameter
tuning was studied in detail by Pázmándi et al. [8]: the
infinite-range fully connected Sherrington-Kirkpatrick
(SK) model [9]. Out-of-equilibrium avalanches at zero
temperature (T ¼ 0) triggered by varying the magnetic
field were numerically studied along the hysteresis loop.
A distinct power-law behavior in the distribution of spin

avalanches, as well as of the magnetization jumps, was
established, i.e., SOC.
The possible existence of SOC was also tested in several

finite-dimensional models, but in all these cases, at least
one parameter has to be tuned. The best-studied such model
is the random-field Ising model where ferromagnetic Ising
spins are coupled to a random field of average strength R.
For space dimensions d > 2, a critical Rc exists where
avalanches and magnetization jumps show SOC; i.e., the
relevant distributions assume a power-law form [10–14].
Similar results were found for the random-bond Ising
model [15], as well as the random-anisotropy Ising model
[16], where by tuning a parameter, SOC can be observed.
A recent study [17] on the efficiency of hysteretic opti-

mization [18] suggests that system-spanning avalanches
might be favored in fully connected models. However,
surprisingly, no numerical studies have been reported to
date for the ‘‘vanilla’’ Edwards-Anderson Ising spin glass
(EASG) [19] (Gaussian interactions with zero mean).
Recently [20,21], the possibility of SOC in the EASG for
d <1 was suggested. The work is strictly valid at equi-
librium (i.e., for switches in the ground state) and is based
on droplet arguments (where a critical response is expected
for fields close to zero). These results raise the question
as to whether SOC might be present in out-of-equilibrium
avalanche simulations of the EASG, as done for the
SK model [8].
A deeper understanding of models that exhibit SOC is

thus needed. Because the SK model is thought to be
the mean-field limit of the EASG, standard lore would
suggest that the EASG may display SOC for all space
dimensions d � 6 (above the upper critical dimension
du, where mean-field behavior sets in). To understand
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whether mean-field behavior suffices or long-range inter-
actions (with and without a diverging number of neigh-
bors) are needed, we study field-driven avalanches at zero
temperature for the EASG in d ¼ 2–6, and 8 (with z ¼ 2d
neighbors), as well as the Viana-Bray (VB) model (d ¼ 1,
z ¼ 6) [22]. In addition, we study spin glasses on scale-free
graphs [23] where the number of neighbors is distributed
according to a power law �z��. Therefore, we probe the
system below and above the (equilibrium) upper critical
dimension, as well as for different combinations of inter-
action range and number of neighbors z. In addition, we
compare to results for the SK model (d ¼ 1, z ¼ N � 1,
with N the number of spins). Our results demonstrate that
as long as d <1, no SOC is present in the EASG.
Furthermore, no SOC is present for the VB model (d¼1
but z ¼ 6 fixed) or spin glasses on scale-free graphs
when the edge degree does not diverge with the system
size (� > 2). However, for the SK model, SOC is recov-
ered. Our results therefore indicate that a diverging
number of neighbors is the key ingredient to obtain SOC
in glassy spin systems.

Model, observables, and algorithm.—We study Ising
models in d space dimensions with the Hamiltonian
H ¼ �P

N
hi;ji JijSiSj �H

P
iSi. Here, Si ¼ �1 represent

N ¼ Ld Ising spins on hypercubic lattices of linear size L.
The interactions Jij are drawn from a Normal distribution

with zero mean, and H represents a magnetic field that
drives the avalanches. For d ¼ 1 (SK limit [9]), the sum
is over all spins and the variance of the interactions is
chosen as 1=ðN � 1Þ. When d <1, the model is known
as the nearest-neighbor EASG [19] where the inter-
actions have variance 1. The VB model is similar to the
SK model; however, the number of neighbors is fixed to 6.
In the scale-free graphs, the distribution of z decays with
a power law �z��.

The algorithm used is zero-temperature Glauber dynam-
ics [10,12,24]. We start by computing the local fields for
all spins: hi ¼

P
jJijSj �H. A spin is unstable if the

stability hiSi < 0. The initial field H is selected such that
H > jhij8 i. The spins are then sorted by hi and the field
H reduced until the stability of the first sorted spin crosses
zero, making the spin unstable [25]. This unstable spin is
flipped, then the local fields of the other spins are recalcu-
lated, and the most unstable spin is flipped again. The
process is repeated until all spins become stable; i.e., their
stabilities are non-negative. In most cases, the flipping of
the first unstable spin triggers the flipping of a substantial
number of other spins, therefore causing avalanches. The
parameters are shown in Table I.

At each avalanche triggered by the above algorithm,
we measure the number of spins n that flipped until the
system regains equilibrium and record the distribution of
avalanche sizes DðnÞ for all triggered avalanches until
Si ! �Si 8 i. In addition, we measure the magnetization
jump S at each avalanche and record the distribution of

magnetization jumps PðSÞ [26,27]. For the SK model, the
avalanches are expected to be power law distributed with
an exponential cutoff that sets in at a characteristic size n�
(similar arguments are valid for the magnetization jumps
with a characteristic size S�). Only if n�ðNÞ ! 1 as
N ! 1 does the system exhibit SOC. We determine n�
in two different ways: First, we fit the tail of the distribu-
tions to DðnÞ � exp½�n=n�ðNÞ� with n�ðNÞ a parameter.
We also fit the small-n regime to a power law and deter-
mine the point of closest proximity between the fits. This
yields a second estimate of n�cðNÞ (see Fig. 1). While n�ðNÞ
obtained by the two approaches can differ by as much as a
factor of �2, n�ðN ! 1Þ obtained by either definition
exhibits the same qualitative behavior. We choose to fit
the distributions and extract n�ðNÞ for a given space
dimension d and (linearly) extrapolate to N ¼ 1.
In addition, to study criticality for H � 0 in the short-

range systems, we measure the avalanche distribution
D0ðnÞ and magnetization jump distribution P0ðSÞ if and
only if the field H crosses zero [see Figs. 2(c) and 2(d)].
These measurements are necessary for short-range systems
because the existence of a spin-glass state in a field remains
controversial [28–33]. Therefore, under this restriction, we
expect to probe an actual (nonequilibrium) spin-glass state.
Reference [8] argued that a true SOC system suppresses

avalanche formation and stabilizes itself by developing a

TABLE I. Simulation parameters: For each dimension d, we
study N ¼ Ld spins (d <1) and average over Nsa disorder
samples. For the SK, VB, and scale-free models (d ¼ 1), we
study up to 32 000 spins with at least 15 000 disorder samples.

d L N Nsa

2 1000 1 000 000 15 000

2 2000 4 000 000 15 000

2 3000 9 000 000 14 880

2 4000 16 000 000 14 860

3 100 1 000 000 15 000

3 150 3 375 000 10 000

3 200 8 000 000 12 900

3 250 15 625 000 14 250

4 10 10 000 15 000

4 20 160 000 15 000

4 40 2 560 000 15 000

4 60 12 960 000 15 000

6 8 262 144 15 000

6 10 1 000 000 15 000

6 12 2 985 984 15 000

6 14 7 529 536 15 000

6 16 16 777 216 15 000

8 4 65 536 15 000

8 5 390 625 15 000

8 6 1 679 616 15 000

8 7 5 764 801 14 480

8 8 16 777 216 10 200
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power-law pseudogap in PðhÞ, the distribution of stabil-
ities, similar to the Efros-Shklovski gap of the Coulomb
glass. Requiring the system to be stable against avalanches
gives stringent bounds on the exponent and the coefficient
of the power-law form. Therefore, we also study the dis-
tribution of local fields (stabilities) PðhÞ for h close to zero.

Results.—Figure 1 shows the avalanche size and
magnetization jump distributions for the d ¼ 3 EASG.
Avalanches remains small; i.e., the cutoffs n� and S� do
not scale with the system size. In fact, even though we
simulate over 107 spins, the largest avalanches (which
occur extremely rarely) are only of approximately 100
spins. A crossover from a power law to an exponential

cutoff in the distributions occurs for rather small n and S,
respectively, suggesting no SOC. The vertical dashed line
in Fig. 1 corresponds to the extrapolated values of n� and
S�, respectively.
Reference [8] reported that the SKmodel (the mean-field

limit or formulation of the EASG) exhibits SOC. Therefore,
one could expect that the EASG exhibits SOC above du¼6.
To test this expectation, we simulate systems in d ¼ 8
dimensions (see Fig. 2). Again, no visible power-law behav-
ior is present, indicating that the system displays no SOC.
To sidestep the debate over the existence of a spin-glass
state in a field, we measure the avalanches only when H
crosses zero, i.e., where it is most probable that the system
is in a spin-glass state, even in a nonequilibrium type of
spin-glass state [26]. Because fluctuations are large when
the restricted magnetization is measured, the data are noisy.
However, again, no signs of SOC [see Figs. 2(c) and 2(d)].
Figure 3 shows data for the SK model. The data are in

agreement with Ref. [8]: DðnÞ [PðSÞ] has a power-law
behavior for small n [S] with a crossover size n�ðNÞ
[S�ðNÞ] that diverges with N. A scaling collapse of the
data agrees with the estimates of Ref. [8]. Furthermore, we
find that 1=n� ¼ 0:000 11ð8Þ compatible with zero for
N ! 1, i.e., n� ¼ 1. Data for the VB model (not shown)
show no signs of SOC and are qualitatively similar to the
data shown in Fig. 1. Data for spin glasses on scale-free
graphs (not shown) only show a power-law behavior
(i.e., SOC) when the number of neighbors diverges with
the system size (� � 2, Ref. [23]). Our results therefore
show that a diverging number of neighbors (node degree) is
a necessary condition for SOC to be present.
In Fig. 4, we plot the crossover avalanche size n� as a

function of the coordination z ¼ 2d and d ¼ 2–8, as well
as z ¼ 1 (SK). The data show that n� / z2; i.e., a true
power-law behavior without a cutoff is only feasible for
z ¼ 1when the graph is complete [34]. Note that the same
behavior is obtained for avalanches restricted to H ¼ 0, as
well as the magnetization jumps. Finally, our results are
independent of the choice of n� (either from a fit to an
exponential or from the closest distance between the fitting
function), illustrating the robustness of the effect. The inset
of Fig. 4 shows Pðh ¼ 0Þ as a function of the number of

FIG. 1 (color online). (a) Avalanche distribution DðnÞ for the
d ¼ 3 EASG. (b) Magnetization jump distribution PðSÞ. Both
are recorded across the whole hysteresis loop, and the data show
no finite-size effects. The solid line represents a power-law fit,
whereas the dashed curve represents an exponential fit (see the
text). The vertical dashed line marks the crossover value (n� and
S� are determined by a fit to an exponential cutoff function; see
the text).

FIG. 2 (color online). (a) Avalanche distribution DðnÞ for the
d ¼ 8 EASG. (b) Magnetization jump distribution PðSÞ. Both
are recorded across the whole hysteresis loop. (c) Avalanche
distribution D0ðnÞ restricted to H ¼ 0. (d) Magnetization jump
distribution P0ðSÞ restricted to H ¼ 0. As in Fig. 1, the data
show no finite-size effects. The solid line represents a power-law
fit, whereas the dashed curve represents an exponential fit. The
vertical (black) dashed lines mark the crossover value where a
power law changes into an exponential. All panels have match-
ing vertical and horizontal scales.

FIG. 3 (color online). (a) Avalanche distribution DðnÞ for the
SK model. (b) Magnetization jump distribution PðSÞ. Both are
recorded across the whole hysteresis loop. The crossover from
power law to an exponential cutoff behavior grows noticeably
with N, signaling that the system displays SOC.
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neighbors z. The data clearly show that Pðh ¼ 0Þ /
z�1=2 ! 0 for z ! 1 only; i.e., SOC is only present for
the fully connected models, such as the SK model [36,37].

Conclusions.—We have demonstrated that avalanches in
short-range spin glasses do not span the system size, even if
the space dimension d is above the upper critical dimen-
sion du ¼ 6. Our results suggest that SOC as found in
Ref. [8] is not necessarily a property of the mean-field
regime but is instead a result of a diverging number of
neighbors z. Mean-field behavior can be reached in two
equivalent ways, either by increasing d above du or by
making the interactions infinite ranged (z ! 1). Here, we
show that these two limits can lead to different behaviors,
which become equivalent only in the d ¼ 1 and of the
infinite-range interaction limit. Analyzing models that
allow for a continuous tuning of an effective space dimen-
sion [38–40] might thus also help in gaining further
insights into this problem.

One has to keep in mind, however, that the conventional
arguments [36] determining du are restricted to equilib-
rium states—which below the glass transition temperature
are typically difficult or impossible to reach experimen-
tally. In contrast, the metastable states that the system visits
on the outer hysteresis loop—which our avalanches
explore—are indeed as far from equilibrium as possible.
One should therefore not naively and indiscriminately
apply equilibrium concepts such as the existence of the
upper critical dimension du ¼ 6 to the far-from-
equilibrium behavior we study here. This might explain
why we do not find critical system-spanning avalanches, as
predicted in Refs. [20,21] for static (equilibrium) response
in short-range systems.

Our finding that the behavior of short-range models
in any finite dimension remains fundamentally different
than that of the fully connected infinite-range model is,

therefore, a striking and a potentially far-reaching result. It
calls for a change of perspective with respect to far-from-
equilibrium states, and we hope that it will stimulate
further efforts from the theoretical and the experimental
community. The special role we suggest for the fully con-
nected long-range interactions may have further interesting
consequences, especially for bad metals near the metal-
insulator transition [41]. Here, the Coulomb interaction
between charge carriers assumes center stage because
poor screening in the bad metal regime directly reveals
its long-range nature [42–44]. Existing work has already
established that the single-particle density of states, which
represents the direct analogue of PðhÞ in this Letter, opens
a power-law ‘‘Efros-Shklovskii’’ gap within the Coulomb
glass phase [42–44]. Given our result that the vanishing of
Pð0Þ is a direct manifestation of SOC, our findings strongly
suggest that in the presence of frustrating fully connected
long-range Coulomb interactions, SOC may survive
[45,46], even in physically relevant space dimensions.
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